Index

(A full index to the course appears at the end of Week 1.)

Topic   Step
Datasets anneal 5.5, 5.7, 5.11, 5.15
  balance-scale 5.8, 5.10, 5.11, 5.15
  bodyfat 5.8, 5.10, 5.11
  breast-cancer 5.10
  iris 5.2, 5.7
Classifiers BayesNet 5.8
  GaussianProcesses 5.17, 5.18
  IBk 5.17
  J48 5.5, 5.8, 5.11
  LinearRegression 5.8, 5.11, 5.17
  LWL (Locally weighted learning) 5.17, 5.18
  NaiveBayes 5.7, 5.8
Filters AddNoise 5.4
  Discretize 5.4, 5.7
Packages jfreechartOffScreenRenderer 5.2, 5.3, 5.8
  kfGroovy 5.20
  tigerJython 5.2, 5.3, 5.4
Python classes DataSource, Filter, os, Remove 5.2
  DataSource, Evaluation, J48, os, Random 5.5
  BayesNet, ChartFactory, ChartPanel, ChartUtilities, DataSource, DefaultXYDataset, DefaultXYZDataset, Evaluation, File, GraphVisualizer, JFrame, J48, LinearRegression, NaiveBayes, os, PlaceNode2, PlotOrientation, ThresholdCurve, TreeVisualizer, XYBubbleRenderer 5.8
  Evaluation, J48, SMOreg, ZeroR 5.10
  Evaluation, Classifier, converters, jvm, os, Random 5.11
Groovy imports ChartFactory, ChartPanel, DataSource, DefaultXYDataset, Instance, Instances, JFrame, J48, NaiveBayes, PlotOrientation, Random, ThresholdCurve 5.15
Plus Environment variable 5.2, 5.3, 5.7, 5.17
  Ethics 5.21
  Groovy 5.15–5.20
  IDRC Shootout challenge 5.15, 5.17, 5.18
  Kaggle 5.21
  Python/Jython 5.2–5.14
  Python-weka-wrapper 5.11
  Scripting 5.1–5.20

Share this article:

This article is from the free online course:

Advanced Data Mining with Weka

The University of Waikato

Get a taste of this course

Find out what this course is like by previewing some of the course steps before you join: