Contact FutureLearn for Support
Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Skip to 0 minutes and 7 secondsHello. I'm Dr. Simon Kelly. This week, we're going to take a look at the use of stable isotope analysis to detect food adulteration. This technique has been used since the early 1970s to detect the extension and substitution of food and drink with cheaper ingredients. Some examples are-- the substitution of freshly squeezed fruit juice with juice from diluted concentrate, the addition of water to wine, the addition of sugar syrups to honey and maple syrup, and the substitution of natural flavours, such as vanilla, with synthetic alternatives made from wood tar. So how do we use stable isotope analysis to detect this kind of food fraud? First of all, let's remind ourselves what we mean by stable isotopes.

Skip to 0 minutes and 53 secondsNot all the atoms of an element are exactly the same. If we use carbon as an example, we can see that, in its most abundant form-- carbon-12-- it contains six protons and six neutrons. The presence of six protons means it is an atom of carbon with an atomic number of 6. However, the number of neutrons can vary between atoms, and these versions of carbon with different numbers of neutrons are called isotopes. Isotopes are atoms of the same element that differ only in the number of neutrons in their nucleus. Here is another example of a carbon isotope-- carbon-13.

Skip to 1 minute and 31 secondsYou can see that it has the same number of protons as carbon-12, but it has an additional neutron, taking the total to seven in the nucleus. It has a slightly higher mass, but it has the same number of electrons, and so behaves the same, chemically, as carbon-12. Carbon-13 is a stable isotope of carbon and does not undergo radioactive decay, unlike carbon-14. A good example of using carbon-stable isotope analysis to uncover food fraud is the detection of cane and corn syrup addition to honey as a cheap extender. A growing demand for honey, and the collapse of domestic bee colonies, means production of honey is falling. And rising prices have led to what industry calls "honey laundering."

Skip to 2 minutes and 16 secondsProducts labelled as pure honey may, in fact, be a honey blend or honey syrup-- that is, honey adulterated with cane sugar or corn syrup. The stabilised detection method relies on measuring differences in the ratios of carbon-13 to carbon-12 that are found in plant sugars present in nectar and plants that are grown for commercial sugar production. About 95% of all plant species, including the vast majority of flowering plants and food crops such as wheat, potatoes, and rice use the Calvin, or C3, pathway to metabolise carbon dioxide during photosynthesis. This process discriminates against carbon-13, giving rise to relatively low carbon-13 to carbon-12 ratios.

Skip to 3 minutes and 2 secondsHowever, sugar cane and maise belong to a small variety of plants that use the Hatch and Slack, or C4, pathway, which discriminates less against carbon-13, giving rise to relatively high carbon-13 to carbon-12 ratios. These differences in the carbon-13 to carbon-12 ratios observed between honey and cane syrups can be precisely measured using a stable isotope ratio mass spectrometer, such as the one you see here, which is a Thermo Fisher Delta V connected to an elemental analyzer. First of all, a very small quantity of the honey test sample-- usually about one milligramme-- is placed in a small tin capsule and sealed.

Skip to 3 minutes and 42 secondsThe capsule is then placed inside the carousel and dropped into a high temperature furnace at 1,000 degrees Celsius in an oxygen atmosphere. Under these conditions, the carbon atoms in the sugars from the honey are completely converted into carbon dioxide. The carbon dioxide is carried by a stream of helium carrier gas through a drawing tube to remove the water of combustion and into a gas chromatography column to separate it from other gases. The carbon dioxide then enters the Thermo Fisher Delta V mass spectrometer, where the relative proportions of carbon-13 dioxide and carbon-12 dioxide are precisely measured after being separated by the magnetic field in the analyzer. Here is the ion chromatogram from the honey sample.

Skip to 4 minutes and 27 secondsThe software reports the corresponding ratio of carbon-13 to carbon-12. By comparing the measured ratio against a database of authentic honeys, the presence or absence of added cane and corn syrups can be confirmed. The sensitivity of the method is limited by the natural variation in honey and sugar syrup's stable carbon isotope ratios. And this can be improved by extracting the protein from the honey and using it as an internal isotopic reference point. In other words, the carbon-13, carbon-12 isotope ratio of the sugar, and the protein in an authentic honey, should be very similar. This is the basis for the official test method, which can detect the addition of corn syrup or cane sugar at as little as 10% in most honeys.

Skip to 5 minutes and 16 secondsAs we've shown, stable isotope analysis is a very powerful technique. And it's now being used far more widely throughout the food industry to check the provenance of their food products and to prevent food fraud from taking place.

Verifying food origins using stable isotopes

In this video, Dr Simon Kelly presents an introduction to isotope ratio mass spectrometry; the differences in isotope abundances found in nature; and how this leads to an approach for authenticating honey.

Share this video:

This video is from the free online course:

Identifying Food Fraud

UEA (University of East Anglia)

Course highlights Get a taste of this course before you join:

  • Becoming a food fraud detective
    Becoming a food fraud detective

    Watch this introduction to the course by Dr Kate Kemsley which gives an overview of food fraud from ancient to modern times

  • Near-infrared spectroscopy
    Near-infrared spectroscopy

    Watch this video in which Dr Kate Kemsley introduces the analytical technique of near-infrared spectroscopy

  • Mid-infrared spectroscopy
    Mid-infrared spectroscopy

    Watch this video showing how FTIR can be used to glean detailed information on chemical components present in ground roast coffee using coffee beans

  • Introducing NMR spectroscopy
    Introducing NMR spectroscopy

    In this video Dr Kate Kemsley introduces the concepts behind Nuclear Magnetic Resonance spectroscopy

  • Benchtop NMR spectroscopy
    Benchtop NMR spectroscopy

    Will Jakes an MChem graduate of the University of East Anglia describes the principles and virtues of the benchtop NMR spectrometer