Skip main navigation

How to Write down Qubit States

In this article, you will learn several ways to write down qubit states.
Š Keio University

A Point on the Bloch Sphere

So far, we have represented our one qubit using two dials, one for the zero state and one for the one state. But it may seem to be a bit of a hassle to keep track of two dials, and not entirely intuitive that one of them gets longer when the other gets shorter.

In the video, we showed you the equation (|alpha^2| + |beta^2| = 1) and said that (|alpha^2|) is the probability of being in the zero state and (|beta^2|) is the probability of being in the one state.

If you are a sharp observer, you may have noted that (alpha) and (beta) are almost like (x) and (y) in the simplest equation for a circle, (x^2 + y^2 = 1). But why the absolute value? Can we just use a point on a circle to represent our qubit?

Almost.

If the only thing we needed to represent was the amplitude of the states of the qubit, we could use a single circle, or even just a quarter of a circle, with the (x) value representing the amount of zero and the (y) value representing the amount of one.

The problem with this approach is that it doesn’t show us the phase of the qubit. We need a way to record both the phase and amplitude in a single picture.

A different way of representing a single qubit is known as the Bloch sphere. (As you might guess, it was created by a person named Bloch – the Nobel prize-winning physicist Felix Bloch.) With the Bloch sphere, we need only one vector, always of length one. It points at the sphere’s north pole to represent zero, to its south pole to represent one, and to somewhere on the equator to represent our 50/50 state. Which “longitude”, or side of the sphere, the vector points to depends on the phase. You can see an example of a vector on the Bloch sphere in the image at the top of this article.

You can see the (X), (Y) and (Z) axes marked on the Bloch sphere. The state of the qubit can be anywhere on the surface of this sphere, but there are six particularly interesting points on it, which we will call the “positive” and “negative” points on each of those axes. We can write them using our dials like this:

our six points on the sphere

Below, we’ll see where those six different diagrams come from, but first a couple of points about the Bloch sphere.

With the sphere, you don’t have to remember to shorten one amplitude when lengthening the other. As long as you have a point on a sphere with a radius of one (the “unit sphere”), the squares of the amplitudes naturally add up to one.

The sphere also conveniently expresses which states are orthogonal: if you have two points opposite each other on the sphere, they are orthogonal. (If you learned about orthogonal vectors in physics or trigonometry, you might wonder why the orthogonal states are 180 degrees apart rather than 90. The Bloch sphere is not a directly physical representation, so vectors on the Bloch sphere have slightly different characteristics.)

This sphere is useful in explaining operations and measurements on single qubits, which we will cover shortly. However, it has a significant drawback: it is not useful for describing multiple qubits, so we will stick with the multiple dials representation most of the time.

Superpositions

A key point of a single qubit is that it can be in a superposition state. Now that we understand a little bit about how to write down the states of a qubit mathematically and how to draw them, we’re ready to look a little more closely at superposition. In the equation above, both alpha and beta can be non-zero, giving us probability amplitudes from both the zero term and from the one term.

For example, we will frequently use a state that is 50% zero and 50% one. Recalling that we need to take the square root, that gives us

[sqrt{1/2}|0rangle + sqrt{1/2}|1rangle]

which we can draw using two dials,

our "plus" state

We can also have states that aren’t 50/50, such as

(1/2|0rangle + sqrt{3/4}|1rangle) a non-50/50 state

where there is a 25% probability that the state is a zero and 75% probability that it is a one.

Phase (and its Geometric Representation)

As noted in the video, a qubit, like a wave, has a phase. By definition, the zero state always has phase zero, while the one state can have any phase, (0) to (2pi). In fact, the phase of the one state is defined relative to the zero state.

A commonly used pair of states is

(sqrt{1/2}|0rangle + sqrt{1/2}|1rangle) and (sqrt{1/2}|0rangle + (pi)sqrt{1/2}|1rangle) our "minus" state

We call these the “ket plus” and “ket minus” states, and write them (|+rangle) and (|-rangle). They are orthogonal to each other, but not to the (|0rangle) and (|1rangle) states.

Another orthogonal pair of states is

(sqrt{1/2}|0rangle + (pi/2)sqrt{1/2}|1rangle) our pi/2 state

and

(sqrt{1/2}|0rangle + (3pi/2)sqrt{1/2}|1rangle). our 3pi/2 state

If we plot these on the Bloch sphere, each orthogonal pair is two opposite points. The (|0rangle)/(|1rangle) pair defines the (Z) axis, the (|+rangle)/(|-rangle) pair defines the (X) axis, and the third pair defines the (Y) axis.

Of course, it’s possible to have any phase we find useful, not just multiples of (pi/2). That phase is critical to generating the proper interference that drives the success of quantum algorithms.

Phase (the Slightly More Mathematical Definition)

If you aren’t familiar with imaginary numbers and complex numbers, you can skip this section without any trouble; our entire discussion depends only on the geometric description above. But if you want to know a little more about the math, read on.

Unlike the classical probabilities we discussed in the video, our quantum probability amplitudes (alpha) and (beta) aren’t restricted to being non-negative, real numbers between zero and one. They can be negative, or even imaginary or complex. Imaginary numbers, you probably recall, are square roots of negative numbers. Complex numbers, in general, can have a real part and an imaginary part. Hopefully, you even remember that a complex number can be represented on a plane where the real part is one axis and the imaginary part is the other axis.

We use (i) to represent the square root of minus one, (i = sqrt{-1}). You don’t really need to know anything more about complex numbers in this course than the fact that they change the phase of a state, or the angle of our vector. But how does this happen? It happens thanks to Euler’s equation (called by some people the most beautiful equation in all of mathematics),

(e^{ipi} + 1 = 0).

More generally, if we have an angle (theta),

(e^{itheta} = costheta + isintheta).

For our purposes, whether the number is real, imaginary, or complex shows up as the phase of our probability amplitude. In fact, the dials and vectors we have already been using actually represent the phase and amplitude of a state. Using the dial vector representation, you don’t need to worry about the fact that complex numbers are involved, you only have to remember to add the vectors appropriately.

But, for the record, our (X) axis states are

(|+rangle = sqrt{1/2}|0rangle + (0)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^0sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + sqrt{1/2}|1rangle), while (|-rangle = sqrt{1/2}|0rangle + (pi)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^{ipi}sqrt{1/2}|1rangle = sqrt{1/2}|0rangle – sqrt{1/2}|1rangle).

Our (Y) axis states become

(sqrt{1/2}|0rangle + (pi/2)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^{ipi/2}sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + isqrt{1/2}|1rangle) and (sqrt{1/2}|0rangle + (3pi/2)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^{i3pi/2}sqrt{1/2}|1rangle = sqrt{1/2}|0rangle – isqrt{1/2}|1rangle).

Physical Qubits

A brief peek ahead: So far, we have talked about qubits as entirely abstract, mathematical entities. But of course, to compute with them, they have to exist in the real world. At the end of this week, we will see that qubits can made using a variety of physical phenomena, such as individual photons and individual electrons. All of these phenomena have complex behavior, but if we use them carefully, we can make them follow a set of rules that allows us to use them as qubits. Then, in the last week of the course, we will learn more about the devices that can create and control these quantum states.

 

量子įŠļæ…‹ã‚’čĄ¨įžã™ã‚‹

前回ぎ動į”ģではīŧŒé‡å­ãƒ“ットぎ重ね合わせとäŊį›¸ã¨ã„う、æĨĩめãĻ重čĻãĒč€ƒãˆæ–šãĢついãĻį°Ąå˜ãĢį´šäģ‹ã—、2ダイヤãƒĢå›ŗをį”¨ã„ãĻįŠļ態ãĢついãĻč­°čĢ–しぞした。 こぎįĢ ã§ã¯ã€ãĒぜį§ãŸãĄãŒ2ダイã‚ĸãƒĢå›ŗã‚’æŽĄį”¨ã—たぎかをčĒŦ明しãĒがら、äģ–ãŽčĄ¨č¨˜æ–šæŗ•ãĢついãĻもčĻ‹ãĻいきぞす。

ブロッホįƒ: 量子įŠļ態を単äŊįƒéĸ上ãĢčĄ¨ã™čĄ¨č¨˜æŗ•

これぞでį§ãŸãĄã¯ã€0įŠļ態と1įŠļæ…‹ãŽãã‚Œãžã‚Œã‚’čĄ¨ã™īŧ’つぎダイã‚ĸãƒĢをäŊŋãŖãĻ1ã¤ãŽé‡å­ãƒ“ãƒƒãƒˆã‚’čĄ¨įžã—ãĻきぞした。 しかし、įŠļ態ぎ推į§ģã¨å…ąãĢ変化する2つぎダイã‚ĸãƒĢを同時ãĢčŋŊいかけるぎは少し手間がかかりぞすし、į‰‡æ–šãŒäŧ¸ãŗるともうį‰‡æ–šã¯į¸Žã‚€ã¨ã„う変化もį›´čĻŗįš„ではありぞせん。

動į”ģではīŧŒ(|alpha^2| + |beta^2| = 1)というį­‰åŧãĢついãĻīŧŒ(|alpha^2|)が0įŠļ態をとるįĸēįŽ‡ã§ (|beta^2|)が1įŠļ態をとるįĸēįŽ‡ã§ã‚るとčŋ°ãšãžã—た。 感ぎいい斚は、į­‰åŧãŽ(alpha)や(beta)が円ぎ斚į¨‹åŧ(x^2 + y^2 = 1)ぎ(x)や(y)ã¨é…ˇäŧŧしãĻいることãĢ気がつくかもしれぞせん。 では、ãĒぜįĩļ寞値をとãĒらãĒければいけãĒいぎでしょうかīŧŸ 単į´”ãĢ円上ぎ1į‚šã‚’ã‚‚ãŖãĻé‡å­ãƒ“ãƒƒãƒˆã‚’čĄ¨ã™ã“ã¨ã¯ã§ããĒいぎでしょうかīŧŸ

よい所ãĢ気がäģ˜ããžã—たīŧ

量子ビットぎįŠļ態がもし振嚅だけであれば、īŧ‘つだけぎ円をį”¨ã„ãĻ、そぎįŠļæ…‹ã‚’č¨˜čŋ°ã™ã‚‹ã“とができぞす。さらãĢč¨€ãˆã°ã€(x)ぎ値を0įŠļ態ぎ振嚅īŧŒ(y)ぎ値を1įŠļ態ぎ振嚅と厚įžŠã™ã‚Œã°ã€å††ãŽå››åˆ†ãŽä¸€ã ã‘刊į”¨ã—ãĻも十分ãĢ量子ビットぎįŠļæ…‹čĄ¨č¨˜ã™ã‚‹ã“ã¨ãŒã§ãã‚‹ã§ã—ã‚‡ã†ã€‚

ところが、原際は、量子ビットãĢは振嚅とäŊį›¸ãŽīŧ’つぎč‡Ēį”ąåēĻがあり、こぎ円をäŊŋãŖãŸčĄ¨č¨˜æŗ•ã§ã¯äŊį›¸ãŽæƒ…å ąã‚’ä¸€åˆ‡čĄ¨įžã™ã‚‹ã“とができぞせん。 äģģ意ぎ量子įŠļæ…‹ã‚’æ›¸ãčĄ¨ã™ãĢは、そぎ振嚅とäŊį›¸ãŽä¸Ąæ–šãĢé–ĸしãĻ記čŋ°ãŒã§ãã‚‹čĄ¨č¨˜æŗ•ãŒåŋ…čĻã¨ãĒりぞす。

ブロッホįƒã¨ã¯ã€å˜ä¸€é‡å­ãƒ“ットぎ振嚅とäŊį›¸ãŽä¸Ąæ–šã‚’čĻ–čĻšįš„ãĢ襨įžã§ãã‚‹čĄ¨č¨˜æŗ•ãŽīŧ‘つです。 īŧˆãŠæ°—ãĨãã‹ã‚‚ã—ã‚Œãžã›ã‚“ãŒã€ã“ãŽčĄ¨č¨˜æŗ•ã¯ãƒŽãƒŧベãƒĢį‰Šį†å­ĻčŗžãŽå—čŗžč€…であるフェãƒĒック゚ãƒģブロッホさんãĢよãŖãĻč€ƒæĄˆã•ã‚Œãžã—ãŸīŧ‰ã€‚ 常ãĢ大きさが1であるようãĒ一つぎベクトãƒĢをį”¨ã„ãĻ量子įŠļæ…‹ã‚’čĄ¨įžã—、ベクトãƒĢがブロッホįƒãŽåŒ—æĨĩį‚šã‚’指しãĻいるときãĢは0įŠļæ…‹ã‚’čĄ¨ã—ã€å—æĨĩį‚šã‚’指しãĻいるときãĢは1įŠļæ…‹ã‚’čĄ¨ã—ãžã™ã€‚

ベクトãƒĢがブロッホįƒãŽčĩ¤é“上ぎを指しãĻいるときは、0と1ぎįŠļ態が同じ比įŽ‡ã§é‡ã­åˆã‚ã›ãŽįŠļæ…‹ã§ã‚‹ã“ã¨ã‚’čĄ¨ã—ãžã™ã€‚ そぎ場合、įĩŒåēĻ(ベクトãƒĢがįƒãŽčĩ¤é“ぎおこを指すか)は、įŠļ態ぎäŊį›¸ãĢよãŖãĻæąē厚しぞす。 こぎペãƒŧジ上部ãĢあるį”ģ像はブロッホįƒä¸Šã§å–り垗るベクトãƒĢãŽä¸€äž‹ã‚’čĄ¨ã—ãŸã‚‚ãŽã§ã™ã€‚

ごčĻ§ãŽã‚ˆã†ãĢ、į”ģ像ãĢは(X)ãƒģ(Y)ãƒģ(Z)čģ¸ãŒæ›¸ãå…ĨれãĻありぞす。量子ビットぎįŠļ態はブロッホįƒãŽįƒéĸ上ぎäģģ意ぎį‚šã§į¤ēされぞすが、そぎ中でもį‰šãĢ、(X),(Y),(Z)ぎ各čģ¸ãŽä¸ĄįĢ¯ã‚’指すīŧ–つぎį‚šã¯ã€ãã‚Œãžã‚Œã€Œãƒ—ナ゚」ぎį‚šãƒģ「マイナ゚」ぎį‚šã¨å‘ŧばれ、į‰šåˆĨãĒį‚šã¨ã—ãĻæ‰ąã‚ã‚Œãžã™ã€‚ã“ã‚Œã‚‰ãŽį‚šã¯ã€2ダイã‚ĸãƒĢå›ŗをį”¨ã„ると、äģĨ下ぎようãĢčĄ¨ã›ãžã™ã€‚

our six points on the sphere

これらぎå›ŗがäŊ•ã‚’čĄ¨ã—ãĻいるかをč§ŖčĒŦする前ãĢ、ブロッホįƒãĢついãĻもう少しå­Ļんでおきぞしょう。

半垄がīŧ‘ぎįƒäŊ“īŧˆå˜äŊįƒã¨å‘ŧãŗぞすīŧ‰ä¸ŠãŽäģģ意ぎį‚šã§ã¯ã€æŒ¯åš…ぎč‡Ē䚗ぎ和をとるとåŋ…ず1ãĢãĒるため、ブロッホįƒã§ã¯į‰‡æ–šãŽįŠļ態ぎ振嚅を大きくしたときãĢ、īŧ’ダイã‚ĸãƒĢå›ŗぎようãĢ、もうį‰‡æ–šãŽæŒ¯åš…ã‚’įŸ­ãčĒŋ整するåŋ…čĻãŒã‚りぞせん。

ぞた、įƒã‚’äŊŋうことでį›´äē¤ã™ã‚‹įŠļæ…‹ã‚’ã†ãžãčĄ¨ã™ã“ã¨ã‚‚ã§ããžã™ã€‚ ブロッホįƒä¸Šã§ã¯īŧŒåŽŸį‚šã‚’挟んで寞į§°ãĒ2į‚šãŒį¤ēすįŠļ態はそれぞれį›´äē¤ã—ぞす。 īŧˆæ•°å­ĻではīŧŒį›´äē¤ã™ã‚‹ãŽã¯č§’åēĻが90åēĻぎときでしたが、ブロッホįƒãŽå ´åˆã¯č§’åēĻが180åēĻぎときãĢį›´äē¤ã—ぞす。 これは、ブロッホįƒãŒæŠŊ蹥įš„ãĒãƒĸデãƒĢであり、そぎ上ぎベクトãƒĢは、į‰Šį†įš„ãĒベクトãƒĢとは少しį•°ãĒるį‰šåž´ã‚’ã‚‚ãŖãĻいるためです。īŧ‰

ã“ãŽčĄ¨č¨˜æŗ•ã¯å˜ä¸€é‡å­ãƒ“ットãĢ寞する操äŊœã‚„æ¸Ŧ厚īŧˆäģŠé€ąåžŒåŠã§č§ŖčĒŦã™ã‚‹čŠąéĄŒã§ã™ãŒīŧ‰ãŽčĒŦ明ãĢäŊŋう場合、とãĻもäžŋåˆŠã§ã¯ã‚ã‚Šãžã™ãŒã€č¤‡æ•°ãŽé‡å­ãƒ“ãƒƒãƒˆãŽæŒ¯ã‚‹čˆžã„ã‚’čĒŦ明するãĢはäŊŋえãĒいという大きãĒæŦ į‚šãŒã‚りぞす。 そぎため、こぎã‚ŗãƒŧ゚ではä¸ģãĢč¤‡æ•°ãŽãƒ€ã‚¤ã‚ĸãƒĢå›ŗをäŊŋãŖãĻčĒŦ明をįļšã‘ることãĢしぞす。

重ね合わせ

単一量子ビットãĢついãĻč€ƒãˆã‚‹æ™‚ã€æœ€ã‚‚é‡čĻãĒį‚šã¯ã€é‡å­ãƒ“ットが重ね合わせįŠļ態をとることができるということです。

これぞでå­Ļんできた量子ビットぎ数å­Ļįš„ãĒ記æŗ•ã¨ãƒ€ã‚¤ã‚ĸãƒĢå›ŗをäŊŋãŖãĻ、こぎ重ね合わせというįžčąĄãĢついãĻもう少しčŠŗしくčĻ‹ãĻいきぞしょう。 前čŋ°ãŽåŧã§ã¯īŧŒ(alpha)と(beta) ãŽä¸Ąæ–šãŒã‚ŧロäģĨ外ぎäģģ意ぎ値をとることができ、それぞれが0įŠļ態と1įŠļ態ぎįĸēįŽ‡æŒ¯åš…とãĒりぞす。

たとえば、äģĨ下ぎようãĒåŧã§čĄ¨ã›ã‚‹ 0įŠļ態と1įŠļ態が50%ずつ重ね合わされたįŠļæ…‹ã¯ã€é‡å­č¨ˆįŽ—ã‚’čĒžã‚‹ä¸Šã§æŦ ã‹ã›ãĒいįŠļ態ぎ一つです。 įĸēįŽ‡ã‹ã‚‰įĸēįŽ‡æŒ¯åš…ãĢ変換する場合は、そぎåšŗ斚栚をとるåŋ…čĻãŒã‚ることãĢ気をつけãĻください。

[sqrt{1/2}|0rangle + sqrt{1/2}|1rangle]

こぎåŧã¯ã€ãƒ€ã‚¤ã‚ĸãƒĢå›ŗをäŊŋうと、æŦĄãŽã‚ˆã†ãĢ襨įžã™ã‚‹ã“ともできぞす。

our "plus" state

上ぎåŧãĢある(vert+rangle)ã¯ã€ã‚ąãƒƒãƒˆãƒ—ãƒŠã‚šã¨å‘ŧã°ã‚Œã‚‹čĄ¨č¨˜ã§ã€ã‚ã¨ã§čĒŦ明する(vert-rangle)īŧˆã‚ąãƒƒãƒˆãƒžã‚¤ãƒŠã‚šīŧ‰ã¨ã‚ˆããƒšã‚ĸでį™ģ場しぞす 。

ã‚‚ãĄã‚ã‚“īŧŒ 量子ビットは 0と1ãŽå‰˛åˆãŒå‡į­‰ã§ã¯ãĒい重ね合わせįŠļ態も取り垗ぞすīŧŽãŸã¨ãˆã°äģĨ下ぎようãĒįŠļ態です。

[1/2|0rangle + sqrt{3/4}|1rangle]

a non-50/50 state

こぎ重ね合わせįŠļ態は、0įŠļ態であるįĸēįŽ‡ãŒ25%īŧˆ1/4īŧ‰ã§1įŠļ態であるįĸēįŽ‡ãŒ75%īŧˆ3/4īŧ‰ã¨ãĒりぞすīŧŽ

äŊį›¸īŧˆã¨ããŽåšžäŊ•å­Ļįš„襨įžīŧ‰

前゚テップぎ動į”ģでčŋ°ãšãŸã‚ˆã†ãĢ、量子ビットはæŗĸと同じくäŊį›¸ã‚’æŒãĄãžã™ã€‚ 厚įžŠãĢより、(0)įŠļ態ぎäŊį›¸ã¯å¸¸ãĢ(0)で、(1)įŠļ態ぎäŊį›¸ã¯(0)から(2pi)ぞでぎäģģ意ぎ値をとりぞす。 つぞり、(1)įŠļ態ぎäŊį›¸ã¯(0)įŠļ態ぎäŊį›¸ãĢį›¸å¯žįš„ãĒもぎとしãĻ厚įžŠã•ã‚ŒãĻいぞす。

[sqrt{1/2}|0rangle + sqrt{1/2}|1rangle]

と

[sqrt{1/2}|0rangle + (pi)sqrt{1/2}|1rangle]

でį¤ēされるīŧ’つぎįŠļ態は、よくペã‚ĸとしãĻäŊŋわれるįŠļ態です。

å‰č€…ã¯ã€ä¸Šč¨˜ãĢį¤ēしたとおり(vert+rangle)īŧˆã‚ąãƒƒãƒˆãƒ—ナ゚īŧ‰ã§ã™ãŒã€åžŒč€…は、äģĨ下ぎようãĢčĄ¨ã‚ã•ã‚Œã€(vert-rangle)īŧˆã‚ąãƒƒãƒˆãƒžã‚¤ãƒŠã‚šīŧ‰ã¨å‘ŧばれぞす。

our "minus" state

(vert+rangle)と(vert-rangle)はそれぞれį›´äē¤ã—ãĻいぞすが、これらは(vert0rangle)や(vert1rangle)とはį›´äē¤ã—ぞせん。

į›´äē¤ã™ã‚‹įŠļ態ぎペã‚ĸãĢは、äģ–ãĢもäģĨ下ぎようãĒもぎが挙げられぞす。

[sqrt{1/2}|0rangle + (pi/2)sqrt{1/2}|1rangle]

our pi/2 state

と

[sqrt{1/2}|0rangle + (3pi/2)sqrt{1/2}|1rangle]

our 3pi/2 state

これらぎįŠļ態をブロッホįƒä¸ŠãĢプロットするとīŧŒãã‚Œãžã‚ŒãŽį›´äē¤ãƒšã‚ĸは原į‚šãĢ寞しãĻ寞į§°ãĒ2į‚šãĢ寞åŋœã—ぞす。(vert0rangle)と(vert1rangle)ぎペã‚ĸは(Z)čģ¸ãŽä¸ĄįĢ¯ãĢ、(vert+rangle)と(vert-rangle)はXčģ¸ä¸ĄįĢ¯ãĢ、最垌ぎペã‚ĸは(Y)čģ¸ãŽä¸ĄįĢ¯ã¨ãĒりぞすīŧŽã“ぎ(pi/2)ぎ倍数ぎäŊį›¸ã¯ã€éŠæ­ŖãĒåš˛æ¸‰ã‚’į”Ÿæˆã™ã‚‹ã“とができるぎで、量子ã‚ĸãƒĢゴãƒĒã‚ēムがæ­Ŗしく動äŊœã™ã‚‹ãŸã‚ãĢは、不可æŦ ãĒå­˜åœ¨ã§ã™ã€‚ã‚‚ãĄã‚ã‚“īŧŒ(pi/2)ぎ倍数äģĨ外でも重čĻãĒäŊį›¸ã¯å­˜åœ¨ã—ぞす。

äŊį›¸īŧˆãŽã‚‚う少し数å­Ļįš„ãĒ厚įžŠīŧ‰

č™šæ•°ã‚„č¤‡į´ æ•°ãĢついãĻあぞりčŠŗしくãĒい斚はこぎ項をéŖ›ã°ã—ãĻ頂いãĻも構いぞせん。 数å­Ļįš„ãĢäŊį›¸ãĢついãĻį†č§Ŗã‚’æˇąã‚ãŸã„æ–šã¯ã€ã“ãŽãžãžčĒ­ãŋįļšã‘ãĻください。

古典įš„ãĒįĸēįŽ‡čĢ–とは違い、量子ビットぎįĸēįŽ‡æŒ¯åš…īŧˆ(alpha)や(beta)īŧ‰ã¯0から1ぞでぎ原数でãĒければãĒらãĒい、というわけではありぞせん。 įĸēįŽ‡æŒ¯åš…ã¯č˛ ãŽå€¤ã€č™šæ•°ã‚„č¤‡į´ æ•°ã‚’とることもありぞす。 č™šæ•°ã¯ã€įŋ’ãŖãŸč¨˜æ†ļãŒã‚ã‚‹ã‹ã‚‚ã—ã‚Œãžã›ã‚“ãŒã€č˛ ãŽæ•°ãŽåšŗ斚栚としãĻčĄ¨ã•ã‚Œã‚‹æ•°ã§ã™ã€‚ 複į´ æ•°ã¯åŽŸæ•°ãŽéƒ¨åˆ†ã¨č¤‡į´ æ•°ãŽéƒ¨åˆ†ã‹ã‚‰ãĒる数です。 複į´ æ•°ãŒåŽŸčģ¸ã¨č™ščģ¸ã‹ã‚‰ãĒるäēŒæŦĄå…ƒåšŗéĸ上ぎベクトãƒĢとしãĻčĄ¨ã•ã‚Œã‚‹ã“ã¨ã‚’æ€ã„å‡ēしãĻください。

ここではīŧŒ(i)を(-1)ぎåšŗ斚栚としãĻäŊŋいぞす。すãĒã‚ãĄã€(i =sqrt{-1})です。 こぎčŦ›įžŠã§ã¯ã€č¤‡į´ æ•°ã‚’äŊŋうことで量子įŠļ態ぎäŊį›¸ã€ã™ãĒã‚ãĄãƒ™ã‚¯ãƒˆãƒĢãŽč§’åēĻを変えることができるということだけįŸĨãŖãĻいれば十分です。 では、それはおぎようãĢしãĻできるぎでしょうか。 それは、äģĨ下ãĢį¤ēすã‚Ēイナãƒŧぎį­‰åŧīŧˆã“れを世į•Œã§ä¸€į•ĒįžŽã—い数åŧã¨å‘ŧãļäēēもいぞすīŧ‰ãĢよãŖãĻ可čƒŊãĢãĒりぞす。

[e^{ipi} + 1 = 0]

一čˆŦįš„ãĢ書くとīŧŒč§’åēĻ(theta)ãĢ寞しãĻ

[e^{itheta} = costheta + isintheta]

が成įĢ‹ã—ぞす。

č™šæ•°ã‚„č¤‡į´ æ•°ã¯įĸēįŽ‡æŒ¯åš…ぎäŊį›¸ãĢé–ĸわãŖãĻきぞす。 åŽŸéš›ã€ã“ã‚Œãžã§æ‰ąãŖãĻきたダイã‚ĸãƒĢとダイã‚ĸãƒĢ上ぎベクトãƒĢは、įŠļ態ぎ振嚅やäŊį›¸ã‚’čĄ¨ã—ãĻいぞす。 ダイã‚ĸãƒĢå›ŗをäŊŋã†å ´åˆã¯ã€č¤‡į´ æ•°ãŽã“とは気ãĢするåŋ…čĻãŒį„Ąãã€äģŖわりãĢベクトãƒĢを遊切ãĢ加įŽ—するåŋ…čĻãŒã‚りぞした。

åŋĩぎį‚ēãĢ書いãĻおくとīŧŒ(X)čģ¸ãŽå…ˆįĢ¯ãŽįŠļ態は

[|+rangle = sqrt{1/2}|0rangle + (0)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^0sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + sqrt{1/2}|1rangle]

と

[|-rangle = sqrt{1/2}|0rangle + (pi)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^{ipi}sqrt{1/2}|1rangle = sqrt{1/2}|0rangle – sqrt{1/2}|1rangle]

で、(Y)čģ¸ãŽå…ˆįĢ¯ãŽįŠļ態は

[sqrt{1/2}|0rangle + (pi/2)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^{ipi/2}sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + isqrt{1/2}|1rangle] [sqrt{1/2}|0rangle + (3pi/2)sqrt{1/2}|1rangle = sqrt{1/2}|0rangle + e^{i3pi/2}sqrt{1/2}|1rangle = sqrt{1/2}|0rangle – isqrt{1/2}|1rangle]

と書くことができぞす。

į‰Šį†įš„ãĒ量子ビット

å°‘ã—å…ˆãŽčŠąã‚’ã—ãžã—ã‚‡ã†ã€‚ これぞで、į§ãŸãĄã¯é‡å­ãƒ“ットを全くぎæŠŊ蹥įš„ãƒģ数å­Ļįš„ãĒå¯žčąĄã¨ã—ãĻæ‰ąãŖãĻきぞした。 しかし、量子ビットをäŊŋãŖãĻ計įŽ—するãĢã¯ã€ãã‚Œã‚‰ã¯ã‚‚ãĄã‚ã‚“įžåŽŸãŽä¸–į•ŒãĢ存在しãĻいるåŋ…čĻãŒã‚りぞす。 ã“ãŽé€ąãŽįĩ‚わりでは、個々ぎ光子やé›ģ子といãŖた、様々ãĒį‰Šį†įžčąĄã‚’äŊŋãŖãĻ原įžã•ã‚ŒãŸé‡å­ãƒ“ットãĢついãĻčĻ‹ãĻいきぞす。 これらぎįžčąĄã¯ã„ãšã‚Œã‚‚č¤‡é›‘ãĒæŒ™å‹•ã‚’æŒãĄãžã™ãŒã€æŗ¨æ„æˇąãæ‰ąã†ã“とãĢより量子ビットとしãĻæ‰ąã†ã“ã¨ãŒã§ãã‚‹ã‚ˆã†ãĢãĒりぞす。 ãžãŸã€æœ€åžŒãŽé€ąã§ã¯é‡å­įŠļ態をį”Ÿæˆã—たりåˆļåžĄã—ãŸã‚Šã™ã‚‹ãƒ‡ãƒã‚¤ã‚šãĢついãĻå­Ļãŗぞす。

Š Keio University
This article is from the free online

Understanding Quantum Computers

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now