Skip main navigation

Measurement

In this article, learn how qubits can be measured in several different ways.
Š Keio University

We just described a single qubit and its important characteristics, its ability to support superposition and phase. But it’s important to note that we can’t directly see either of those characteristics. Instead, we must measure the qubit, which has some behaviors that are relatively intuitive and some that aren’t.

As we noted, the waves we have been describing are called probability amplitudes in quantum mechanics. These amplitudes determine the probability of finding a value when we measure the state.

Measuring a Qubit

When we measure a qubit, we always find one of two states (usually either zero or one, but we’ll relax that a bit later). For a 50/50 state like our “ket plus” state

(sqrt{1/2}|0rangle + sqrt{1/2}|1rangle), our "plus" state

there is a fifty percent probability of finding zero, and a fifty percent probability of finding one. We can calculate this by taking the absolute value of the square of the amplitude. For both (|0rangle) and (|1rangle), that is (|sqrt{1/2}|^2 = 1/2 = 50%).

For the state

(1/2|0rangle + sqrt{3/4}|1rangle) a non-50/50 state

there is a (|1/2|^2 = 1/4 = 25%) probability of finding zero and a 75% probability of finding one. We don’t get 0.75 when we measure it; instead, our quantum probability amplitudes determine what the probability is of finding one of the states.

Collapse of the Wave Function

Not only does measuring the qubit give us a value based on the probability amplitudes, we also say that it collapses the wave function. What does this mean?

It means that after we find, for example, a zero, any amplitude for one has disappeared. We are left with 100% zero. There is no way to work backwards from the measurement result to determine anything about the original probability amplitudes, other than obviously the amplitude for the value that we measured was non-zero.

If you want to know more, you’ll just have to rerun your experiment a bunch of times, starting from the preparation of your qubit, to collect some statistics. For example, if you run your experiment 100 times and you find zero 49 times and one 51 times, you can infer that your experiment is creating a state that is about 50% zero and 50% one.

Three Ways of Measuring One Qubit

the Bloch sphere

The Bloch sphere is useful for thinking about measurements. (It’s one of the main reasons we introduced the concept.) The qubit’s vector can point to an arbitrary position on the sphere. If the vector is in the “northern” hemisphere, we are more likely to find a (|0rangle) state when we measure (recalling that (|0rangle) is at the north pole), whereas if the vector is in the “southern” hemisphere, we are more likely to find a (|1rangle) (since the (|1rangle) state is at the south pole). The state is then projected onto the state we measured, so that we only have (|0rangle) or (|1rangle) left. (Projected means that we move from our arbitrary vector onto one of those states.)

The (|0rangle) / (|1rangle) axis of the Bloch sphere is known as the (Z) axis. In our discussion so far, we have assumed that measuring a qubit means looking at it in a way that projects it into one of those two states. Measuring a qubit is actually more general than that: we can pick any line through the center of Bloch sphere and measure the qubit, which will project the qubit onto one of the two places where the line meets the sphere.

To keep things relatively simple, we will assume that our measurements are along the (X), (Y), or (Z) axis of the Bloch sphere. When we measure on the (X) axis, we will project our qubit to one end of the (X) axis, which we called our (|+rangle) and (|-rangle) states.

Measuring along the (Y) axis is less common, so unlike the (Z) and (X) axes, the two ends don’t have such simple nicknames. The states at the two ends are
(sqrt{1/2}|0rangle + (pi/2)sqrt{1/2}|1rangle) or (sqrt{1/2}|0rangle + (3pi/2)sqrt{1/2}|1rangle.)

Relationship to Algorithms

Just a quick peek ahead: in fact, the wave function collapse can affect not just the particular qubit we are looking at, but the state of all of the qubits in our system, under some circumstances. We’ll see a little more of that when we talk about entanglement shortly, and a lot more when we talk about algorithms.

We will see that the entire goal of an algorithm is to use interference, which we have already talked about, to create states where measuring the outcome has a high probability of being the solution to our problem.

æ¸Ŧ厚

これぞでãĢ、重ね合わせįŠļ態やäŊį›¸ã¨ã„ãŖた量子ビットぎį‰šæ€§ãĢついãĻå­Ļãŗぞした。 ãžãŸã€ãã‚Œã‚‰ãŽé‡å­ãƒ“ãƒƒãƒˆãŽæƒ…å ąã¯ããŽãžãžãƒ€ã‚¤ãƒŦクトãĢčĻ‹ãˆã‚‹ã‚‚ぎではãĒい、ということも重čĻãĒį‚šãŽīŧ‘つです。 量子ビットぎįŠļ態をįŸĨるãĢは、そぎ量子ビットを「æ¸Ŧ厚」するåŋ…čĻãŒã‚りぞす。

前čŋ°ãŽé€šã‚Šã€é‡å­åŠ›å­ĻではæŗĸをįĸēįŽ‡æŒ¯åš…とå‘ŧãŗぞす。量子ビットをæ¸Ŧ厚したときãĢ、あるįŠļ態がå‡ē力としãĻčĻŗæ¸ŦされるįĸēįŽ‡ã¯ã€ã“ぎæŗĸぎ振嚅ãĢよãŖãĻæąēぞりぞす。

量子ビットぎæ¸Ŧ厚

量子ビットぎæ¸Ŧ厚では、īŧ’つぎįŠļæ…‹ãŽã†ãĄã„ãšã‚Œã‹1つぎįŠļ態だけをčĻŗæ¸Ŧしぞす(äģŠã¯0か1ãŽãŠãĄã‚‰ã‹ã‚’čĻŗæ¸ŦするというčĒč­˜ã§æ§‹ã„ぞせんが、原際は少し違うため、čŠŗį´°ã¯æ”šã‚ãĻčĒŦ明しぞす)。 ã€Œã‚ąãƒƒãƒˆãƒ—ãƒŠã‚šã€ãŽã‚ˆã†ãĒ50/50ぎįŠļ態は

[sqrt{1/2}|0rangle + sqrt{1/2}|1rangle]

our "plus" state

で、50%ぎįĸēįŽ‡ã§0をčĻŗæ¸Ŧし、50%ぎįĸēįŽ‡ã§1をčĻŗæ¸Ŧしぞす。振嚅ぎįĩļ寞値ぎč‡Ē䚗でįĸēįŽ‡ã‚’æą‚ã‚ã‚‹ã“ã¨ãŒã§ãã‚‹ãŸã‚ã€ã“ãŽå ´åˆã€(vert0rangle)や (vert1rangle)がčĻŗæ¸ŦされるįĸēįŽ‡ã¯ä¸Ąæ–š (vertsqrt{1/2}vert^2 = 1/2 =50%)ã§č¨ˆįŽ—することができぞす。

ぞた、

[1/2|0rangle + sqrt{3/4}|1rangle]

こぎようãĒįŠļ態ぎ場合、

a non-50/50 state

0をčĻŗæ¸ŦするįĸēįŽ‡ã¯(vert1/2vert^2 = 1/4 = 25%)ã§ã‚ã‚Šã€åŒæ§˜ãŽč¨ˆįŽ—手æŗ•ã§1をčĻŗæ¸ŦするįĸēįŽ‡ãŒ75īŧ…であることが分かりぞす。 あくぞで、量子įĸēįŽ‡æŒ¯åš…は、それぞれぎįŠļ態がčĻŗæ¸ŦされるįĸēįŽ‡ã‚’æąē厚するだけであり、æ¸ŦåŽšã‚’čĄŒã†ã“ã¨ã§0.75という値がį›´æŽĨ垗られるわけではありぞせん。

æŗĸ動é–ĸ数ぎ収束

量子ビットをæ¸Ŧ厚するということは、įĸēįŽ‡æŒ¯åš…ãĢåŸēãĨã„ãŸã‚ã‚‹å€¤ã‚’åž—ã‚‹čĄŒį‚ēであると同時ãĢ、そぎ量子ビットぎæŗĸ動é–ĸ数ぎ収束も意å‘ŗしぞす。さãĻ、おういうことãĒぎでしょうīŧŸ

æŗĸ動é–ĸ数ぎ収束とは、äģŽãĢある量子ビットぎæ¸Ŧ厚įĩæžœãŒ0だãŖた場合、1ぎ持ãŖãĻいたįĸēįŽ‡æŒ¯åš…はæļˆå¤ąã—ãĻしぞい、0ぎįĸēįŽ‡æŒ¯åš…が100%ãĢ変化することを意å‘ŗしぞす。

æ¸Ŧ厚ãĢよãŖãĻåž—ã‚‰ã‚Œã‚‹æƒ…å ąã¯ã€čĻŗæ¸Ŧで垗られたįŠļ態(0ぞたは1)ぎįĸēįŽ‡æŒ¯åš…が0%ではãĒかãŖたことを除いãĻ、åŸēæœŦįš„ãĢはäŊ•ã‚‚ありぞせん。

ある量子ビットぎįŠļ態をčŠŗį´°ãĢįŸĨりたい場合、そぎ量子ビットをæē–備しãĻ、それをæ¸ŦåŽšã™ã‚‹åŽŸé¨“ã‚’č¤‡æ•°å›žčĄŒã†åŋ…čĻãŒã‚りぞす。䞋えば、もし100å›žãŽåŽŸé¨“ã‚’čĄŒã„ã€49回0をčĻŗæ¸Ŧし、51回1をčĻŗæ¸Ŧした場合、そぎ量子ビットは50%で1、50%で0ぎ重ね合わせįŠļ態ãĢあãŖたと推æ¸Ŧできぞす。

1つぎ量子ビットをæ¸Ŧ厚する3つぎ斚æŗ•

the Bloch sphere

こういãŖた単一量子ビットぎæ¸Ŧ厚ãĢついãĻč€ƒãˆã‚‹æ™‚ã€ãƒ–ãƒ­ãƒƒãƒ›įƒã¯äžŋ刊ãĒ襨記æŗ•ã§ã™ã€‚ 量子ビットぎベクトãƒĢはįƒéĸ上ぎäģģ意ぎį‚šã‚’指すことができぞす。 ベクトãƒĢが北半įƒãĢある場合、æ¸Ŧ厚で(vert0rangle)をčĻŗæ¸ŦするįĸēįŽ‡ãŒéĢ˜ããĒりぞす( (vert0rangle)が北æĨĩãĢあることを思いå‡ēしãĻください)。 同様ãĢ、ベクトãƒĢが南半įƒãĢある場合は(vert1rangle)をčĻŗæ¸ŦするįĸēįŽ‡ãŒéĢ˜ããĒりぞす。((vert1rangle)が南æĨĩãĢあることを思いå‡ēしãĻください)。

量子ビットぎįŠļ態は、æ¸Ŧ厚įĩæžœãŽįŠļ態ãĢ射åŊąã•ã‚Œã‚‹ãŽã§ã€æ¸Ŧ厚垌ぎ量子ビットぎįŠļ態は(vert0rangle)もしくは(vert1rangle)ãĢãĒりぞす。 (こぎ場合ぎ射åŊąã¨ã¯äģģ意ぎベクトãƒĢから(vert0rangle)もしくは(vert1rangle)ぎįŠļ態ãĢį§ģ動することを意å‘ŗしぞす。)

ブロッホįƒä¸Šã§ãŽ(vert0rangle)と(vert1rangle)をįĩãļčģ¸ã¯(Z)čģ¸ã¨å‘ŧばれ、量子ビットをæ¸Ŧ厚することは(Z)čģ¸ãŽä¸ĄįĢ¯ãŽįŠļæ…‹ãŽã†ãĄã€ãŠãĄã‚‰ã‹īŧ‘つぎįŠļ態へと射åŊąã™ã‚‹ã“とをäģŽåŽšã—ãĻきぞした。 原際は量子ビットぎæ¸Ŧ厚は常ãĢ(Z)čģ¸ã‚’åŸēåē•ã¨ã™ã‚‹åŋ…čĻæ€§ã¯ãĒく、ブロッホįƒãŽåŽŸį‚šã‚’通るäģģ意ぎčģ¸ãĢそãŖãĻ射åŊąã‚’čĄŒã†ã“ã¨ãŒã§ããžã™ã€‚

į°Ąį•Ĩ化ぎため、æ¸Ŧ厚åŸēåē•ã¯ãƒ–ロッホįƒãŽ(X),(Y), ぞたは(Z)čģ¸ãĢæ˛ŋうもぎとäģŽåŽšã—ぞす。(X)čģ¸ã§æ¸Ŧ厚した場合、量子ビットは(X)čģ¸ãŽä¸€æ–šãŽįĢ¯(vert+rangle)か(vert-rangle))ãĢįŠļ態を投åŊąã—ぞす。

(Y)čģ¸ãĢæ˛ŋãŖãĻæ¸Ŧ厚することはあぞり一čˆŦįš„ではãĒいため、 (Z)や(X) čģ¸ãŽã‚ˆã†ãĢ严įĢ¯ãĢ名前はありぞせん。 严įĢ¯ãŽįŠļ態はそれぞれ(sqrt{1/2}vert0rangle + (pi/2)sqrt{1/2}vert1rangle)と (sqrt{1/2}vert0rangle + (3pi/2)sqrt{1/2}vert1rangle)です。

ã‚ĸãƒĢゴãƒĒã‚ēムとぎé–ĸäŋ‚

æŗĸ動é–ĸ数ぎ崊åŖŠã¯æ¸Ŧ厚をæ–Ŋしたį‰šåŽšãŽé‡å­ãƒ“ットだけではãĒく、įŠļæŗãĢよãŖãĻはį§é”ãŽã‚ˇã‚šãƒ†ãƒ å†…ãĢある全ãĻぎ量子ビットぎįŠļ態ãĢもåŊąéŸŋを与えることがありぞす。čŠŗį´°ãĢついãĻは、äģŠåžŒã€é‡å­ã‚‚つれãĢついãĻå­Ļãļ時ãĢ攚めãĻčĒŦæ˜Žã‚’čĄŒã„ãžã™ã€‚ãžãŸã€ã‚ĸãƒĢゴãƒĒã‚ēムãĢついãĻå­Ļãļ時は、į‰šåŽšãŽé‡å­ãƒ“ットぎæŗĸ動é–ĸ数ぎ崊åŖŠãŒãŠãŽã‚ˆã†ãĢしãĻ全äŊ“ãĢåŊąéŸŋしãĻくるかを更ãĢčŠŗã—ããŠčŠąã—ãžã™ã€‚ ãžãŸã€åš˛æ¸‰ã‚’į”¨ã„ることãĢよãŖãĻ。量子ビットをæ¸Ŧ厚した時ãĢ垗られるįĩæžœãŒéĢ˜ã„įĸēįŽ‡ã§č§ŖããŸã„å•éĄŒãŽį­”えãĢãĒるようãĢ振嚅を操äŊœã—ãĻいくことが、量子ã‚ĸãƒĢゴãƒĒã‚ēムぎäģ•įĩ„ãŋであることをčĻ‹ãĻいきぞす。

Š Keio University
This article is from the free online

Understanding Quantum Computers

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now