Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Skip to 0 minutes and 10 secondsHi and welcome back. In this lecture, I'll explain you how to import and inspect event logs in ProM. So we're still in the extraction phase since importing and inspecting is still part of checking whether the data is correct, although it also helps in the data processing phase. Before we switch to ProM I have to briefly explain several import options that the tool will provide. You have four options. They are increasing in the amount of events that they support, but they are also increasingly slower. So it's a trade off between size and speed. So these are the four options.

Skip to 0 minutes and 51 secondsIn a couple of seconds I will show you the native import option because we are dealing with a very small event log and the native option is the fastest one. If we encounter issues or you encounter issues with other event logs or the memory is an issue, can switch to one of the subsequent input options which allow more data to be imported but are slightly slower in processing the data. So without further ado, let's look at ProM. So with ProM open let's import an event log and see what options you have. So the first options you already have when you import. So you can choose the option to import.

Skip to 1 minute and 29 secondsAnd as explained in the lecture, the native one uses the most memory but it's quite fast, lightweight. And sequential is also quite fast but has some miner limitations. And then disk-buffered by MapDB puts as little information in the memory as possible and therefore is the best choice when you have extremely large event logs. But for now and especially for artificial event logs, we can use the naive import option. So after import, you see the XLog event log as an object. And let's visualize and inspect this event log. So the main visualizer for event logs is the log dialogue. It consists of two charts in the middle but the key figures are in this left column.

Skip to 2 minutes and 13 secondsSo it indicates that there's 1 process in the event log. That's always the case with 100 cases or traces with 590 events recorded for these 100 cases. Then we have seven different event classes that have been observed and they cover only one event type. I'll explain it in a bit more detail later. You can also record which resource or employee executed a particular event. In this example we don't have that. We have only one originator. But this can help to see how users collaborate. In the central part of this view you have two graphs. You have the events per case and the event classes per case.

Skip to 2 minutes and 56 secondsThe top chart shows how many events per case are recorded and also the distribution. So the minimal length of a trace is five events and it's this bar but the majority is six events. And in real life event logs you mainly see a more spread distribution with a bigger range. You also see the number of events classes per case. That actually means the number of activities roughly. In this case this is exactly the same, so that indicates that every event class is only occurring once per trace. On the right-hand side you see the first and the last observed timestamp, which gives you the time span of the event log.

Skip to 3 minutes and 35 secondsOn the left you see that we're currently looking at the dashboard, but we can also inspect the event log and view a summary. So that's inspect. Now you see all the traces that are recorded in the event log. And when you click a trace you see the list of events recorded for that trace. On the right-hand side you currently see the attributes for this current trace which is only the concept name. But when you select an event, you see that it has a concept name, the life cycle transition which indicates the states of the activity that was observed.

Skip to 4 minutes and 6 secondsSo the activities check credit in the completion state so it could be that check credit is at some point started and completed and therefore would result in two events. Every event also has a timestamp and you can select different events to see how attributes change. Note, however, that traces and events can have many more attributes attached, like cost or case information. But in this simple artificial event log, that's not included. Here on the top you also have another tab, the Explorer, which is actually a different visualization of the individual traces. So here you can see the traces and you can hover over each of the widgets and you get additional information. The color indicates how frequent the activity is.

Skip to 4 minutes and 53 secondsFor instance, this orange activity is the accept which is less frequent because it's either accepted or rejected. So here you can see the traces in a different view. You can also inspect the log level attributes. So so far we can only inspect trace and event attributes but here you can see which attributes are recorded on the log level. For instance, which extensions or attribute notions are included and, most importantly, which attributes are global for the trace and the event level. Global attributes mean that every trace or event has these attributes set. So in this event log every trace has a concept name and every event has a concept name, its life cycle transition, and a timestamp.

Skip to 5 minutes and 38 secondsAnd this is usually the case for all event logs. Next we have classifiers. And a classifier indicates your notion of event. And in this case it's the activity that has been executed and the life cycle transition. So for instance start and complete over particular activity result in two different event classes. An example of a different classifier is to use the resource attribute as a classifier. Then you're actually looking at how a case is handled with different resources. And then the next list of attributes is actually all type of attributes that have been added for the 3TU data center. We will ignore them from now.

Skip to 6 minutes and 19 secondsThe last step on the left is actually the summary, and it gives a bit more detailed overview of how often particular event classes occur. So on the top you can see that you have 100 traces with 590 events. And for the MXM legacy classifier, which indicates the concept name plus the life cycle transition, is a particular class. That's how we evaluate and distinguish events. You see that there are seven classes and these are the frequencies. So register application is observed 100 times and it's roughly 17% of all observed events. But you see the check system has been observed 90 times and reject and accept have been observed 80 and 20 times respectively.

Skip to 7 minutes and 4 secondsYou also see how many particular events or event class was the starting or the ending event for a trace. In this example, all traces start with register application and end with send decision via email. So using the log dialogue and the different views, you can really get an initial idea of the event log. So usually this is the first thing you do after you import an event log. You look at the log dialogue and get an idea of what's in there. Later on in this week we'll explain further analysis techniques that you can use to get an idea of the event log content. So now you know how to import and inspect event logs in ProM.

Skip to 7 minutes and 44 secondsSo this can be used to evaluate whether the inspection was done successfully, whether you see any anomalies. And this is important to check soon before you start any other subsequent steps. So I hope that we see you again in one of the following lectures.

Event logs in ProM

In this video we explain how to import and inspect an event log. We explain in great detail what you see for an artificial event log. This helps to further understand what is contained in an event log.

Share this video:

This video is from the free online course:

Introduction to Process Mining with ProM

Eindhoven University of Technology

Get a taste of this course

Find out what this course is like by previewing some of the course steps before you join:

  • Introduction
    Introduction
    video

    Introduction to process mining: recognizing event data, what is process mining and what can process mining analyse.

  • Installing ProM lite
    Installing ProM lite
    video

    In this step we show how to find and install the free and open source process mining tool ProM lite.

  • Using ProM lite
    Using ProM lite
    video

    In this lecture we show the basic concepts and usage of ProM (lite): the resource, action and visualization perspectives.

  • Event logs
    Event logs
    video

    In this lecture we explain what an event log is and how it is structured. We also explain the most common attributes found in an XES event log.

  • Converting a CSV file to an event log
    Converting a CSV file to an event log
    video

    Most data is not recorded in event log format. In this video we explain how a CSV file can be converted to an event log.

  • Exploring event logs with the dotted chart
    Exploring event logs with the dotted chart
    video

    After loading an event log into ProM it is important to apply the dotted chart to get initial process insights before process models are discovered.

  • Filtering event logs
    Filtering event logs
    video

    Before good quality process models can be discovered the event log data needs to be filtered to contain only completed cases for instance.

Contact FutureLearn for Support