Contact FutureLearn for Support
Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Skip to 0 minutes and 5 secondsOne of the problems we have in robotics research is what happens when we take the robots out of the laboratory environment and into the real world? And at that point, we have a multitude of sensory information that could potentially confuse the robot. One example of this is how does the robot distinguish between signals that it causes itself and signals that are caused by interaction of the robot with the external world? A nice example of this in humans is tickling. Why can't we tickle ourselves?

Skip to 0 minutes and 33 secondsAnd the issue there is, basically, it's thought by the neuroscientists that we predict the consequences of our own motor actions and the sensory consequences of those actions, so if you like, the touch that we feel from our own fingers moving. But we can't predict how the sensations will be caused by someone else tickling us. That's an unpredictable thing. And so it's thought that if we put this kind of algorithm into a robot, the robot will be much better able to distinguish between signals that it causes itself, or sensations that it causes itself, and sensations that are caused by the external world. A nice example of this is in our whisking robot.

Skip to 1 minute and 13 secondsSo, we set up an experiment where we had our whisking robot use its whiskers to tactilely investigate the world. The idea was that it was supposed to contact an object and then orient, or turn, towards that object. What we found was that worked fine, except on some occasions it would turn and orient to something that was not there, and we called this a phantom orient, or a ghost orient. The way we corrected this was to set up an algorithm in the robot where it can actually predict the sensory consequences of its own actions. So it could predict the sensory signals generated by its own movement of its whiskers.

Skip to 1 minute and 48 secondsAnd by doing that, it could then distinguish which sensations were caused by its own whisker movements, and which sensations were caused by contact with the external world, because those contacts with the external world were unpredictable.

Using biomimicry to build robust robots

Natural organisms, through millions of years of natural selection, have evolved to take on the challenges of their environment. These attributes make them adaptable, versatile and robust and it is these design goals that researchers aim to achieve in robotics.

In this video, Dr Sean Anderson explains how the answer to a biological question - why can’t we tickle ourselves? - helped researchers at The University of Sheffield to solve a particular robotic problem.

Share this video:

This video is from the free online course:

Building a Future with Robots

The University of Sheffield

Course highlights Get a taste of this course before you join: