Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.
A picture of a medicine capsule containing DNA
A capsule of DNA

Gene therapy

Gene therapy is a term used to describe the delivery of nucleic acid polymers (either DNA or RNA) into a patient’s cells as a drug to treat disease, including the replacement of a mutated gene with functional copy.

Gene therapies can be delivered by a number of different mechanisms (Figure 1) and introduced into either somatic (body) cells where the effect is not passed onto the children or into the gametes (sperm or egg cells) where the effect is heritable. We have also included a PDF version of Figure 1 in the downloads section below in case you find this figure difficult to read.

Gene augmentation therapy diagram Figure 1: Gene therapy techniques © St George’s, University of London

In order to get the therapeutic section of RNA / DNA / gene into the cell, a vehicle or vector is required. Commonly used vectors include viruses, bacteria or plasmids. The vector carries the nucleic acids across the cell membrane, cytoplasm and into the nucleus of the cell. Once inside the nucleus, the new nucleic acids may replace the function of a mutated gene, inhibit production of a gene / protein or target sub-groups of cells for destruction (Figure 1).

For many years gene therapy has promised to transform the management of patients with genetic diseases but, sadly, consistent, reliable gene therapies remain elusive. This failure of gene therapies to become a mainstay of treatment is due to a number of different factors:

  • It can be challenging to ensure the nucleic acids reach the right cell at the right time. If a new gene reaches the wrong cell not only will the therapy fail but it may cause serious side effects.
  • The new nucleic acids may be recognised by the body’s defence mechanism as foreign and be destroyed. As well as eliminating the therapeutic vector, the triggered immune response may cause serious clinical problems for the patient.
  • It is difficult to ensure that newly introduced nucleic acids only interfere with the mutated gene and not other, normally functioning, genes.
  • So far, gene therapy is enormously expensive.

Although, because of these challenges, gene therapy remains a largely experimental technique, there have been some successes including the treatment of X linked severe combined immune deficiency (SCID).

Talking point:

Scientists have recently reported in the New England Journal of Medicine that they have “cured” a boy with sickle cell anaemia using gene therapy. This has been heavily reported in the mainstream media.

What are your thoughts about whether this is a “game-changer” for the field and why?

Share this article:

This article is from the free online course:

The Genomics Era: the Future of Genetics in Medicine

St George's, University of London

Get a taste of this course

Find out what this course is like by previewing some of the course steps before you join:

  • Welcome to Week 1
    Welcome to Week 1
    video

    In this video, Lead Educator, Dr Kate Tatton-Brown welcomes learners to the course and explains the course aims and outcomes.

  • Did you know?
    Did you know?
    video

    Our resident scientist tells you his favourite genomics facts.

  • Errors in recombination
    Errors in recombination
    article

    This video describes how structural chromosome abnormalities occur when errors occur in recombination.

  • Responsibility in the genomic era
    Responsibility in the genomic era
    video

    In this tutorial, you will hear from Dr Carwyn Rhys Hooper on the concept of responsibility for health.

Contact FutureLearn for Support