Contact FutureLearn for Support
Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Skip to 0 minutes and 11 secondsDAVID MANALLACK: Hi. In this chemistry module, we will take a look at the evolution of drugs used for treating depression. From simple chemical starting points, medicinal chemists have been able to liaise with clinicians to understand how their drugs worked. The modifications made to these compounds have sometimes dramatically altered their biological actions and clinical profiles. From Maria's perspective, our understanding of the chemistry of depression gives us insight into helping her with her condition.

Skip to 0 minutes and 45 secondsThe origins of antidepressants can be traced back to the 1930s, when the first antihistamines were being developed by a French company, Rhone-Poulenc, to treat allergies. If we build up the structure of one of these compounds, phenbenzamine, we start with a benzene ring. And adjacent to this ring is another benzene ring. The two rings are joined by a short, two atom chain, where one of these atoms is a nitrogen. Attached to this is another short chain that ends with a basic amino group with two methyl groups attached. The theme of two aromatic rings and a basic nitrogen is carried through in this module as we evolve this compound into modern day, antidepressant medications.

Skip to 1 minute and 40 secondsFrom these early origins of antihistamines, there emerged a wide range of compounds. Shown here is the anti-psychotic compound, chlopromazine, which was discovered to great effect in the 1950s. Once again, we see the presence of two aromatic rings now bonded together by a sulphur atom. And there's a short chain to the basic amino group.

Skip to 2 minutes and 9 secondsA simple chemical modification to the three ring system of chlorpromazine gave us the first tricyclic antidepressant drugs, which included imipramine.

Skip to 2 minutes and 21 secondsThis period of the 20th century was a rich phase of drug development, with projects leading off in several directions to discover new antihistamines, anti-psychotics, and antidepressant drugs. While numerous classes of drugs emerged from this early work, they often had side effects because they were not specific enough. Treatment with tricyclic antidepressants resulted in sedation and constipation, along with many other side effects. Clearly, better drugs were needed. Key to the development of improved drugs was establishing just how the tricyclic antidepressants were able to treat this condition. In the 1960s, it was found that the tricyclic antidepressants inhibited the reuptake of noradrenaline and serotonin. So let's have a look at the chemical structures of these natural neurotransmitters.

Skip to 3 minutes and 24 secondsFirst, we will examine noradrenaline. The molecule comprises a benzene ring with two hydroxyl groups. Attached to this is a two carbon chain with a hydroxyl group and a basic amino group. Serotonin has some similarities to noradrenaline. It too has an aromatic system that comprises two rings with a hydroxyl group. There's also a two carbon chain to a basic amino group. As we've heard from a biology perspective, when serotonin is released during neurotransmission, some of the compound is actively taken back into the cell in a process known as reuptake.

Skip to 4 minutes and 15 secondsNow interestingly, at the time when tricyclic antidepressants were discovered to inhibit noradrenaline and serotonin reuptake, simultaneous research found that certain antihistamines, including diphenhydramine, could also block serotonin and noradrenaline reuptake. This animation compares the tricyclic antidepressant imipramine with the antihistamine diphenhydramine. Looking at both compounds, it is clear that there are some structural similarities between them. Both compounds have two aromatic benzene rings attached to a short carbon chain that leads to a basic nitrogen atom. Superimposing these compounds highlights their structural similarities.

Skip to 5 minutes and 9 secondsThe common chemical scaffold is shown here in red. From this molecular comparison, we can speculate that it is possible that both molecules interfere with the reuptake of noradrenaline and serotonin in the same way. Brian Malloy and Klaus Schmiegel, working at Eli Lilly in the USA, used diphenhydramine as a starting point to develop reuptake blockers. The subtle modifications of changing the linkage between the two rings by moving the oxygen atom produced nisoxetine. As a research tool, nisoxetine was very useful as it was more selective at inhibiting noradrenaline reuptake with lesser effect on serotonin reuptake. Nisoxetine, however, was never marketed as a human medicine. From nisoxetine, a further small change led to fluoxetine.

Skip to 6 minutes and 10 secondsThe CF3 group, or trifluoromethyl group, was the key to giving this molecule the ability to selectively inhibit serotonin reuptake. And this compound was marketed in 1987 as Prozac. As this compound is very specific for serotonin reuptake, it has fewer side effects than the tricyclic antidepressants. Prozac also gave us the name for this class of drugs, which are termed Selective Serotonin Reuptake Inhibitors, or the acronym SSRIs.

Skip to 6 minutes and 48 secondsFor some of the chemistry modules we've discussed in this course, we've had information about the interactions these drugs make with their target proteins.

Skip to 6 minutes and 58 secondsIn this particular case, we have information on a related protein that binds the SSRIs and tricyclic antidepressants. This protein gives us tantalising clues to how these compounds work and may, in the future, help us to design better drugs to achieve better health outcomes. So at this point, we've developed an article to read to take you through to the new medicines in this area.

Depression chemistry: part 1

Watch David describe the changes that led to our current day medicines. For this example, the molecular evolution that traces antidepressant origins back to antihistamines.


Share this video:

This video is from the free online course:

The Science of Medicines

Monash University

Course highlights Get a taste of this course before you join:

  • Introduction: the healthcare team
    Introduction: the healthcare team
    video

    Watch Kirstie and Lyn describe health care teams and how doctors and pharmacists work together. Kirstie also provides a brief overview of the course.

  • Diabetes: patient introduction
    Diabetes: patient introduction
    video

    Watch Kirstie introduce Shirley Park, a mildly overweight patient with Type 2 diabetes. Unfortunately for Shirley, diet and exercise have not helped.

  •  Heart disease: patient introduction
    Heart disease: patient introduction
    video

    Watch Kirstie introduce Steve Park, an overweight 49-year-old with reflux and high blood pressure.

  • Pain patient introduction
    Pain patient introduction
    video

    Watch Kirstie introduces Ari, a gentleman with chronic back pain on multiple medications, including morphine tablets.

  • Smoking: patient introduction
    Smoking: patient introduction
    video

    Watch Kirstie introduce Tracey Wilson, a 28 years of age smoker who wants to quit.

  • Depression: patient introduction
    Depression: patient introduction
    video

    Watch Kirstie introduce Maria Tarantino, a 32 years of age mother of three, including a young baby who is suffering from a depressive disorder.

  • Depression pharmaceutics
    Depression pharmaceutics
    video

    Watch Ian combine medicine design and pharmaceutics to demonstrate how often fluoxetine needs to be taken.