Skip main navigation

Example : Entropy of gas spring system

Special exercise

In the spring-gas system before

An ideal gas is contained in a cylinder. Initially the pressure, volume and temperature were P1, V1, and T1. A spring with a spring constant k attaches to the piston as the figure. The area of piston is A. The gas expands against the spring by increasing temperature to at constant pressure T2.
Calculate the entropy change of the ideal gas subsystem.

As an exercise, let’s calculate the actual heat first. From the article in week 2( ‘Example 2: Equation of state for ideal gas’), we know that the displacement has a relationship k∆x2=nR(T2−T1).

  • Whole system : closed
  • Subsystem 1: ideal gas, Rest: surrounding

For ideal gas subsystem 1

Entropy change of the ideal gas subsystem :
Take a reversible path = reversible expansion at constant pressure
This article is from the free online

Thermodynamics in Energy Engineering

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now