Ask the expert: Teddy Syed
From concepts to runways
Physical computing provides a unique intermediary between the digital and analog worlds that we find ourselves immersed in daily. Often, the way this is accomplished is by programmatically using elements of our everyday environment to control objects. Like the smart thermostat that you interact with and program based on the temperature in your apartment, you may have already encountered physical computing and not have realized it.Given the persuasiveness of physical computing today, it is not surprising that wearables and fashion-tech is an area where it is rapidly growing, especially on avant-garde runways. These runways and the garments that appear on them are highly experimental, expressive and emphasize creativity. When electronics is introduced into the avant-garde world, the result is often something visually and technically amazing. For example, the dutch fashion-tech designer Anouk Wipprecht has created concept garments that incorporate elements of nature, such as smoke or spiders, even the human brain.
How is physical computing incorporated into wearables and fashion?
As you saw in the video in the last step, fashion designers are incredibly hands-on with the programmable aspects of fashion-tech garments. Everything from 3D printing, to programming, to soldering electronics is applicable when physically realising a concept. The entirety of this process is briefly summarised below:

Opportunities and challenges
It remains a challenge for fashion designers to create many of the garments you’ve seen. Often there is a gap in technology literacy and a large number of choices they can make – such as when or how to use 3D printing, what sensor is appropriate, to what type of programming is needed to make a sensor function.There are also practical challenges within the broader space of wearables and fashion. Washability of a garment infused with technology can be problematic, as well as the types of electronics incorporated, which are often rigid and uncomfortable on a body. There are also challenges in choosing a battery that is the right sized and provides enough power.While the practical challenges are ongoing and require much research, creating physical computing tools for the wearables and fashion area provides an excellent opportunity for innovation. From simpler programming tools, to simpler 3D printing and fabric techniques and machinery, to better methods of incorporating new types of smart fabrics, the area is ready to bridge the gap between technology and clothing.Our purpose is to transform access to education.
We offer a diverse selection of courses from leading universities and cultural institutions from around the world. These are delivered one step at a time, and are accessible on mobile, tablet and desktop, so you can fit learning around your life.
We believe learning should be an enjoyable, social experience, so our courses offer the opportunity to discuss what you’re learning with others as you go, helping you make fresh discoveries and form new ideas.
You can unlock new opportunities with unlimited access to hundreds of online short courses for a year by subscribing to our Unlimited package. Build your knowledge with top universities and organisations.
Learn more about how FutureLearn is transforming access to education