Skip main navigation

NV Diamond/ダイヤモンド窒素-空孔中心

NV Diamond/ダイヤモンド窒素-空孔中心
© Keio University
多くのマテリアルは本質的には規則的な結晶内に配列された原子である。もしも原子が欠落していたり、異なる種類の原子で置換されている場合、その均一な配置は壊れてしまいます。さらに核の中の陽子の数の変化は電子が”感じる”引力を変化させるので、単一電子をそこに閉じ込めることも可能になります。ダイヤモンドに炭素以外の物質が混入するとエネルギーレベルが変化によって、吸収、放出される光の波長(色)は変化し、色中心と呼ばれます。量子コンピューティングにおいてはダイヤモンドの炭素原子1個を窒素原子で置換したものが有用な色中心となります。

量子ビット

NVセンターの基底状態はスピン三重項(トリプレット)状態として知られています。スピン三重項状態は2つの状態(スピンアップやスピンダウンなど)ではなく、(+1)、(0)、(-1)という3つの状態を持っています。そのうちの2つを使うことで量子ビットを作ることができます。これも他の技術と同様、マイクロ波のパルスを使って量子ビットの状態を制御することができます。

NVセンターは可視光範囲にある光子を放出します。同時に2つのNVセンターに光子を放出させることができれば、2つのNVセンターをある距離を超えてもつれさせることができます。

天然炭素製のダイヤモンドには、核内でスピンしている炭素の同位体(^{13}C)((1%)程度)が含まれています。 原子がNV中心近くにある場合、NV中心の状態を核と交換し、1つではなく2つ量子ビットを持つことができます。核量子ビットは外力に対する反応が遅く、長くスピンが持つ量子情報を保持することができます。

強度

量子ドットや超伝導系とは異なり、NVダイヤモンドは室温でも動作することができます。 もちろん多くの実験は極低温下で行われますが、それでも絶対温度付近まで下げずとも行えます。 可視光光子は、より長波長の光子よりも容易に捕捉して検出することができるので、 NVダイヤモンドは量子ネットワークを構築するための非常に魅力的な技術と考えられています。

NVダイヤモンドの最大の欠点は加工の難しさです。研究者は、ダイヤモンドに天然に存在する欠陥を探すか、あるいは高エネルギーでダイヤモンド片に原子を発射して、格子に欠陥を生じさせる必要があります。もちろんそれらを正確に配置することはとても大きな課題となっています。

© Keio University
This article is from the free online

量子コンピュータ入門

Created by
FutureLearn - Learning For Life

Our purpose is to transform access to education.

We offer a diverse selection of courses from leading universities and cultural institutions from around the world. These are delivered one step at a time, and are accessible on mobile, tablet and desktop, so you can fit learning around your life.

We believe learning should be an enjoyable, social experience, so our courses offer the opportunity to discuss what you’re learning with others as you go, helping you make fresh discoveries and form new ideas.
You can unlock new opportunities with unlimited access to hundreds of online short courses for a year by subscribing to our Unlimited package. Build your knowledge with top universities and organisations.

Learn more about how FutureLearn is transforming access to education