

Sequences

Types of sequences

- **1** Find the next term in the unusual sequences below:
- **1a** 2, 12, 1112, 1112, 3112, 132112 ...

answer:

1b M, T, W, T, F, S ...

answer:

1c O, T, T, F, F, S, S, E, ...

answer:

Fibonacci sequences

2 Write the next five terms of the Fibonacci style sequences that start with:

Sequences

2b 3 - 2

2c - 1 1

3 Complete the terms in the Fibonacci style sequence below:

Sequences

Arithmetic sequences

- **4** For the following sequences find the next term, the 10^{th} term and the n^{th} term.
- **4a** 3, 5, 7, 9 ...

Sequences

4b 10, 17, 24, 31 ...

The next term is	
The 10 th term is	
The n^{th} term: $P_n =$	

Sequences

4c 3, 8, 13, 18 ...

The next term is	
The 10 th term is	
The n^{th} term: $P_n =$:

Sequences

4d 17, 14, 11, 8 ...

The next term is	
The 10 th term is	
The n^{th} term: $P_n =$:

Sequences

The geometry of arithmetic sequences.

5 A sequence is made with white and pink tiles as below.

Complete the table below:

Pattern number	Number of pink tiles	Number of white tiles	Total number of tiles
1			
2			
3			
4			
5			
10			
n			

Sequences

Geometric sequences

6 Find the first five terms of the geometric sequence with $G_1 = 3$ and $G_{n+1} = 4 \times G_n$

- 7 State the first term and the common ratio of the following sequences:
- **7a** ..., 18, 54,...

7c ..., 10 ..., 250, ...

First term:

Common ratio:

Square numbers

Here are some square numbers:

Sequences

- 8 Write down the next 3 terms in each of these sequences. In each case, explain how the sequence is related to the sequence of square numbers 1, 4, 9, 16, 25 ...
- **8a** 0, 3, 8, 15, 24, ...

Answer:

Sequences

8b 2, 5, 10, 17, 26

Answer:

8c 11, 14, 19, 26, 35 ...

Answer:

© STEM Learning

Sequences

8d 6, 9, 14, 21, 30 ...

Answer:

Triangular numbers

Here are some triangular numbers

© STEM Learning

Sequences

- **9** Write down the missing terms in each sequence.
- **9a** 1, ..., 6, 10,..., 21, ...

- **9b** 2, 4, 7, ..., ..., 29, ...
- **9c** 1,5, ..., 23, ...

Perfect numbers

10a Complete the factor diagram to show that 6 is a perfect number.

10b Use a factor diagram to show that 21 is not a perfect number.

© STEM Learning

Sequences

10c Use a factor diagram to show that 20 is not a perfect number.

10d Show that 19 is not a perfect number.

11 Using any two digit number as a starting point, what is the longest factor chain you can find?

Sequences

Happy numbers

12a Show that 86 is a 'Happy' number.

12b Show that 23 is a 'Happy' number.

Sequences

12c Show that 7 is a 'Happy' number.

12d Show that 21, 11 and 62 are not 'Happy' numbers.