Number

Sequences

Types of sequences

1 Find the next term in the unusual sequences below:
1a $2,12,1112,1112,3112,132112 \ldots$
answer:

1b M, T, W, T, F, S ...
answer:

1c $\mathrm{O}, \mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{S}, \mathrm{S}, \mathrm{E}, \ldots$ answer:

Fibonacci sequences
2 Write the next five terms of the Fibonacci style sequences that start with:

2a

Number

Sequences

2b $3-2$

2c $\begin{array}{lll} & -1\end{array}$

3 Complete the terms in the Fibonacci style sequence below:

Number

Sequences

Arithmetic sequences

4 For the following sequences find the next term, the $10^{\text {th }}$ term and the $n^{\text {th }}$ term.

4a 3,5,7, $9 \ldots$

The next term is \square
The $10^{\text {th }}$ term is \square
The $n^{\text {th }}$ term: $P_{n}=$

Number

Sequences

4b 10, 17, 24, $31 \ldots$

The next term is \square
The $10^{\text {th }}$ term is \square
The $n^{\text {th }}$ term: $\mathrm{P}_{\mathrm{n}}=$

Number

Sequences

4c $3,8,13,18 \ldots$

The next term is \square
The $10^{\text {th }}$ term is \square
The $n^{\text {th }}$ term: $\mathrm{P}_{\mathrm{n}}=$

Number

Sequences

4d 17, 14, 11, $8 \ldots$

The next term is \square
The $10^{\text {th }}$ term is \square
The $n^{\text {th }}$ term: $\mathrm{P}_{\mathrm{n}}=$

Number

Sequences

The geometry of arithmetic sequences.

5 A sequence is made with white and pink tiles as below.

Complete the table below:

Pattern number	Number of pink tiles	Number of white tiles	Total number of tiles
1			
2			
3			
4			
5			
10			
n			

Number

Sequences

Geometric sequences

6 Find the first five terms of the geometric sequence with $G_{1}=3$ and $G_{n+1}=4 \times G_{n}$

7 State the first term and the common ratio of the following sequences:
7a ..., 18, $54, \ldots$

First term: \square
Common ratio: \square

7b ..., ..., 36, 54, ...

First term: \square
Common ratio: \square

Number

Sequences

7c $\ldots, 10 \ldots, 250, \ldots$

First term: \square Common ratio: \square

Square numbers

Here are some square numbers:

Number

Sequences

8 Write down the next 3 terms in each of these sequences.
In each case, explain how the sequence is related to the sequence of square numbers $1,4,9,16,25 \ldots$

8a $0,3,8,15,24, \ldots$

Sequence

Answer:

Number

Sequences

8b 2, 5, 10, 17, 26

Answer:

8c 11, 14, 19, 26, $35 \ldots$

Answer: \qquad

Number

Sequences

8d 6, 9, 14, 21, $30 \ldots$

Answer: \qquad

Triangular numbers

Here are some triangular numbers

© STEM Learning

Number

Sequences

9 Write down the missing terms in each sequence.
9a $1, \ldots, 6,10, \ldots, 21, \ldots$

$$
1 \rightarrow+\ldots>\rightarrow+\ldots \rightarrow 6 \rightarrow+\ldots>10 \rightarrow+\ldots \rightarrow \square \rightarrow+\ldots>-21
$$

9b $2,4,7, \ldots, \ldots, \ldots, 29, \ldots$

9c $1,5, \ldots, \ldots, 23, \ldots$

Perfect numbers

10a Complete the factor diagram to show that 6 is a perfect number.

10b Use a factor diagram to show that 21 is not a perfect number.

Number

Sequences

10c Use a factor diagram to show that 20 is not a perfect number.

10d Show that 19 is not a perfect number.
\qquad
\qquad
\qquad
11 Using any two digit number as a starting point, what is the longest factor chain you can find?
\qquad
\qquad

Number

Sequences

Happy numbers

12a Show that 86 is a 'Happy' number.

12b Show that 23 is a 'Happy' number.

Number

Sequences

12c Show that 7 is a 'Happy' number.

12d Show that 21, 11 and 62 are not 'Happy' numbers.

