

Order of operations and exact answers

Working with negatives

Complete the following:

1a
$$-5-3=$$

1b
$$-7-2 =$$

1b
$$-7-2 =$$
 1c $-9-8 =$

1d
$$-4-4=$$

1e
$$-3-8=$$

1e
$$-3-8=$$
 1f $-5-9=$

Complete these calculations:

2a
$$-5 +$$
 = -9 **2b** $-3 +$ = -7 **2c** $-7 +$ = -10

2b
$$-3 + \left(\right) = -7$$

2c
$$-7 + () = -10$$

2d
$$-8 + \bigcirc = -6$$

2d
$$-8 +$$
 = -6 **2e** $-4 +$ = -1 **2f** $-10 +$ = -6

Complete these multiplication tables: 3

×		– 1	
2			
	- 2	2	
- 3			- 9

×	– 2		
	10		
-2		6	
3			-12

Order of operations and exact answers

Order of operations

4 Calculate:

4b
$$8 - 3 \times 2 =$$

4c
$$19 - 4 \times 3 =$$

4d
$$3 \times 6 - 9 =$$

4e
$$15 - 4 + 7 \times 2 =$$

4f
$$11 \times 3 + 2 =$$

4g
$$16 \times 4 - 3 =$$

4h
$$6 + 7 \times 2 - 20 \div 4 =$$

5 Put brackets into each of the statements below to make it correct:

5a
$$3 \times 6 + 1 = 21$$

5b
$$5 + 6 \times 2 = 22$$

5c
$$45 \div 6 + 3 = 5$$

5d
$$49 - 3 + 2 = 44$$

Order of operations and exact answers

Simplifying surds

8 Write the following in simplified surd form.

8a
$$\sqrt{8} = \sqrt{}$$

8b
$$\sqrt{32} =$$

8c
$$\sqrt{100} =$$

8d
$$\sqrt{63} =$$

8e
$$\sqrt{180} =$$

8f
$$\sqrt{192} =$$

7 For thousands of years people have been trying to find accurate ways of calculating the circumference of a circle. They all knew it was 3-and-a-bit times the diameter - but how big was the 'bit'?

These are some of the values used by early civilisations:

Babylonian
$$\frac{25}{8}$$

Chinese
$$\frac{355}{113}$$

Egyptian
$$\frac{256}{81}$$

Indian
$$\sqrt{10}$$

Greek $\frac{22}{7}$ and $\frac{377}{120}$

Order of operations and exact answers

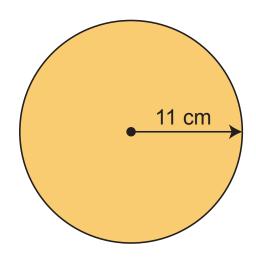
7a Use your calculator to find decimal forms for these values.

Civilisation	Fraction	Decimal
Babylonian	<u>25</u> 8	
Egyptian	<u>256</u> 81	
Greek 1	<u>22</u> 7	
Greek 2	377 120	
Chinese	<u>355</u> 113	
Indian	√10	

7b Write down all the figures that your calculator gives for π

$$\pi$$
 =

7c List the civilisations in order, starting with the one with the closest estimate to π and ending with the one with the least close estimate.


1	
2	
3	
4	
5	
6	

Order of operations and exact answers

Multiples of pi

8 A circle has radius r = 11cm.

Leaving your answers as multiples of π , calculate:

8a Its diameter

$$D = 2 \times r$$

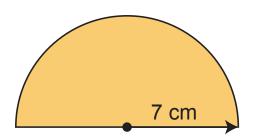
$$D = 2 \times \bigcirc = \bigcirc cm$$

8b Its circumference

$$C = 2\pi r$$

$$C = 2 \times \bigcirc \times \bigcirc = \bigcirc \pi \text{ cm}$$

8c Its area


$$A = \pi r^2$$

$$A = \bigcirc \times \bigcirc \times \bigcirc = \bigcirc \pi \text{ cm}^2$$

Order of operations and exact answers

9 A semi-circle has radius of 7cm. Find its perimeter in terms of pi.

