Number

Order of operations and exact answers

Working with negatives

1 Complete the following:

1a $-5-3=$
1b $-7-2=$

1e $-3-8=$
1f $-5-9=$

2 Complete these calculations:

3 Complete these multiplication tables:

$3 a$ \times -1 2 -2 2 -3

3b

x	-2		\square
	10		
-2		6	
3			-12

Number

Order of operations and exact answers

Order of operations

4 Calculate:

4a $6+7 \times 2=$

4b $8-3 \times 2=$

4c $19-4 \times 3=$

4d $3 \times 6-9=$

4e $15-4+7 \times 2=$

4f $11 \times 3+2=$

4g $16 \times 4-3=$

4h $6+7 \times 2-20 \div 4=$

5 Put brackets into each of the statements below to make it correct:

5a $3 \times 6+1=21$

5c $45 \div 6+3=5$
5d $49-3+2=44$
© STEM Learning

Number

Order of operations and exact answers

Simplifying surds

8 Write the following in simplified surd form.
8a $\quad \sqrt{8}=\square \sqrt{\square}$
8b $\sqrt{32}=$
8c $\sqrt{100}=$
8d $\sqrt{63}=$
$8 \mathrm{e} \sqrt{180}=$
$8 \mathrm{f} \sqrt{192}=$

7 For thousands of years people have been trying to find accurate ways of calculating the circumference of a circle. They all knew it was 3 -and-a-bit times the diameter - but how big was the 'bit'?

These are some of the values used by early civilisations:
Babylonian $\frac{25}{8} \quad$ Chinese $\frac{355}{113}$
Egyptian $\frac{256}{81}$
Indian $\sqrt{10}$
Greek $\quad \frac{22}{7}$ and $\frac{377}{120}$
© STEM Learning

Number

Order of operations and exact answers

7a Use your calculator to find decimal forms for these values.

Civilisation	Fraction	Decimal
Babylonian	$\frac{25}{8}$	
Egyptian	$\frac{256}{81}$	
Greek 1	$\frac{22}{7}$	
Greek 2	$\frac{377}{120}$	
Chinese	$\frac{355}{113}$	
Indian	$\sqrt{10}$	

7b Write down all the figures that your calculator gives for π

$$
\pi=\square
$$

7c List the civilisations in order, starting with the one with the closest estimate to π and ending with the one with the least close estimate.

Number

Order of operations and exact answers

Multiples of pi

8 A circle has radius $r=11 \mathrm{~cm}$.

Leaving your answers as multiples of π, calculate:
8a Its diameter
$\mathrm{D}=2 \times r$
$\mathrm{D}=2 \times \square=\square \mathrm{cm}$

8b Its circumference

$$
\mathrm{C}=2 \pi r
$$

$C=2 \times \square$
\square \times \square $=$ \square $\pi \mathrm{cm}$

8c Its area

$$
\mathrm{A}=\pi r^{2} \quad \mathrm{~A}=\square \times \square \times \square=\square \pi \mathrm{cm}^{2}
$$

Number

Order of operations and exact answers

9 A semi-circle has radius of 7 cm .
Find its perimeter in terms of pi.

