Duration
4 weeksWeekly study
12 hours
Data Science Ethics
This course is part of the Data Analytics for Decision Making Microcredential. On this microcredential you will:
Boost your data science career potential
Alongside world-class computer science experts from Queen Mary, on this microcredential you’ll learn the process for collating and cleansing data. You’ll discover how to interpret and communicate data to others and gain valuable insights to inform your decision-making process.
You’ll also explore the essential ethical and legal issues that need to be considered when generating, analysing, and disseminating data.
Gain data analytics certification
Ultimately, you’ll come away with the accredited skills you need to apply for roles as a data scientist, or to enhance your current organisation’s capacity to interpret and manage data to solve complex problems and predict future trends.
Syllabus
Week 1
Data accuracy and validity
Welcome to the course
Welcome to Data Science Ethics. Let's get started and find out more about what you can expect from this course.
Introduction to data ethics
In data science, we need to be aware of the ethical implications of the data we work with. Here, we'll define the term ‘data ethics’, introduce you to the Data Ethics Framework, and highlight the importance of an ethics framework.
Identifying the legal requirements of data use
As a data scientist, you'll have access to a plethora of datasets. But does this mean that you're allowed to use these resources? In these steps, we'll consider the often overlooked legal requirements of data use.
Ensuring your data is reliable
Conducting data analysis that is unreliable is an ethical concern. In these steps, we'll explore how you can determine if your dataset is reliable, the concept of 'data bias' and why this is seen as a limitation within datasets.
Weekly wrap-up
This will conclude the first week of the course and we will take a sneak peek of what we will be seeing in Week 2.
Week 2
Data analysis ethics
Welcome to Week 2
Welcome to Week 2 of the Data Science Ethics course. Let's get started and find out more about what you can expect from this week.
How can I ensure that my data analysis does not infringe on privacy?
Datasets used for decision making are generally about people. In these steps we’ll explore personal vs sensitive data, privacy invading technologies, and the problems with anonymisation techniques and how to address them.
Are there errors in my analysis approach?
Poor data analysis can lead to poor decisions, which in turn can have a negative impact on people’s lives. Here, we will look at the common sources of errors that can lead to poor data analysis.
Common fallacies
Sometimes, a data scientist might be tempted to interpret data to fit into pre-conceived notions in a certain context. These fallacies can impact how people will interpret the data. Here we will explore some common data fallacies.
Weekly wrap-up
This will conclude the second week of the course and we will take a sneak peek of what we will be seeing in Week 3.
Week 3
Data visualisation ethics
Welcome to Week 3
Welcome to Week 3 of the Data Science Ethics course. Let's get started and find out more about what you can expect from this week.
Is there a wrong way to present data?
Data visualisation is a phase where you could end up misinterpreting results. Here, we’ll explore examples of misinterpreted visualisations and how poorly designed visualisations can be misleading and difficult to understand.
Deceptive visualisation techniques
As a data scientist you need to be aware of deceptive visualisation techniques as you do not want to fall in the trap of using these unintentionally. In these steps we’ll explore the common deceptive techniques.
Ethical principles for visualisations
Throughout this course, we have highlighted the importance of ethics within the different phases of a data science project. We’ll now explore some ethical principles that are frequently overlooked when creating visualisations.
Weekly wrap-up
This will conclude the third week of the course, and will introduce the fourth and last week of the course, which is focused on revision of key topics.
Week 4
Revision and assessment preparation
Welcome to Week 4
Welcome to the fourth and final week of the first course. We will revise the contents learnt throughout the previous three weeks.
Learning on this course
On every step of the course you can meet other learners, share your ideas and join in with active discussions in the comments.
Who is the course for?
This course is part of the Data Analytics for Decision Making Microcredential. This microcredential would appeal to anyone looking to apply for roles as a data scientist, improve their current organisation’s data analysis, or looking to apply for higher-level study in data science.
Who developed the course?
Established
1887Location
London, UKWorld ranking
Top 110Source: Times Higher Education World University Rankings 2020
Learning on FutureLearn
Your learning, your rules
- Courses are split into weeks, activities, and steps to help you keep track of your learning
- Learn through a mix of bite-sized videos, long- and short-form articles, audio, and practical activities
- Stay motivated by using the Progress page to keep track of your step completion and assessment scores
Join a global classroom
- Experience the power of social learning, and get inspired by an international network of learners
- Share ideas with your peers and course educators on every step of the course
- Join the conversation by reading, @ing, liking, bookmarking, and replying to comments from others
Map your progress
- As you work through the course, use notifications and the Progress page to guide your learning
- Whenever you’re ready, mark each step as complete, you’re in control
Want to know more about learning on FutureLearn? Using FutureLearn