Contact FutureLearn for Support
Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.
Railway going up a mountain.
Steep scenic railway in the Blue Mountains, Australia.

Slopes of lines — as well as pyramids, railways and roofs

The slope of a line is a precise mathematical formulation of how steep it is. This is a concept that has important ramifications when building roads, railways, houses and ski jumps. Even ancient pyramids would have been built with a firm eye on how steep things are!

In this step we

  • solidify your mathematical understanding of the important notion of slope

  • look at a variety of examples of slopes in practice.

What is the slope of a line?

The slope of a line is a number which is defined as

So the line that goes through the points and has slope

We often use the Greek symbol to denote a change, in which case we would write

Note that the slope of a vertical line is not defined, since in that case the denominator would be zero, which is not allowed. Another way of expressing this is that a vertical line has slope equal to “infinity”.

Picture of line AB with two points A,B and the triangle showing change in x and change in y

Because of similar triangles, if we choose two other points on the same line, the calculation of the slope would give the exact same value. So the slope really does depend on the line, and not on the two particular points we choose on it.

Q1 (E): What is the slope of the line where and ?

The connection with direct proportions

The simple line represents a direct proportionality with constant . For each increase of in the value, increases by . This number could also be , in which case doesn’t change at all, or could be negative, in which case actually decreases as increases.

When we visualize as a line in the Cartesian plane, we see that is exactly the slope of this line as defined above. In the following figure we see lines together with their various slopes.

Some lines through the origin and their slopes, m=1,2,3,-1,-5/2

Q2 (C): If the line is perpendicular to the line , then what is the relation between and ?

Slope or pitch of roofs

Slope is an important concept in the design and construction of roofs: and is in that industry expressed as the ratio of the vertical rise to the horizontal run, and usually called the pitch of the roof. A roof that rises 4 inches for every 1 foot or 12 inches of run is said to have a slope or pitch of “ in ” or “”. This notation reinforces the idea that it is the proportion between the two quantities that matters, not the absolute values themselves. A pitch of is the same as a pitch of , or .

While steep roofs are more difficult to build, and more dangerous to work on and fix, they have advantages. Thatch roofs for example need to be steep to allow water to drain from them effectively. Roofs in areas where there is a lot of snow need to have a high pitch so that the snow does not accumulate over winter.

Picture of thatch roof© “Anne Hathaway’s cottage” by Michael Zawadski/Wikimedia Commons CC BY SA 2.0

Gradients or slopes of railways

Slopes of lines are important for railway engineers. On a (1 in 100) gradient, a locomotive can pull half (or less) of the load that it can pull on level track. Modern railways have improved technology, and in fact the steepest part of the Lisbon tram system, located in Calçada de São Francisco, has a record gradient of 14.5% (about 1 in 6.9).

Of course for railways with systems of cables or interlocking cogs, the gradient can be much higher. For example, Pilatus railway (Switzerland) at 48% and the steepest in the world Scenic railway (Australia) at 52%.

Gradients or slopes of streets

The residential street with the steepest gradient is Baldwin street in Dunedin, New Zealand, with a gradient of about .

Picture of steepest streetA House on Baldwin Street” Public Domain/Wikimedia Commons

While gradient is usually measured as a percentage, the corresponding slope would be just a number, so that a gradient would correspond to a slope of or . A gradient of corresponds to a slope of , with an angle of inclination of degrees. Here is a picture that shows lines with various gradients.

Graph showing lines with gradients of 5%, 10%, 20%, 30%, 40%

Q3 (M): What do you guess is the maximum average gradient of a Tour de France leg?

Q4 (M): How about the slope for the Mayan pyramid at Chichen Itza?

Chichen Itza step pyramid© “Chichen Itza pyramid” by Att309/Wikimedia Commons CC BY SA 3.0


A1. The slope is .

A2. Perpendicular lines have slopes which multiply to . This is a lovely fact. One way to see it is to consider just lines through the origin . If is another point, then the line will have slope . How about a line perpendicular to ? That is the line where , and it will have slope . So the product will be .

Here is a picture which illustrates these perpendicular lines in the case of .

Picture of two perpendicular lines through the origin, one through  [3,5], the other through [-5,3]

A3. On the Tour de France route for 2015, the highest average gradient (10.1%) was in Stage 14: Rodez to Mende.

A4. El Castillo, the main pyramid at Chichen Itza is 55.3 metres wide by 30 metres tall, resulting in a slope of just over .

Share this article:

This article is from the free online course:

Maths for Humans: Linear and Quadratic Relations

UNSW Sydney

Course highlights Get a taste of this course before you join:

  • A pair of Witchetty Grubs
    Australian bush tucker

    Adventurer Bear Grylls has claimed that, "Pound for pound, insects contain more protein than beef". Let's investigate!

  • The Cartesian plane and the beauty of graph paper
    The Cartesian plane and the beauty of graph paper

    The Cartesian plane, modelled by a sheet of graph paper, is fundamental for much of modern mathematics. Norman Wildberger explains the basics.

  • Quadratics from Apollonius to Bezier
    Quadratics from Apollonius to Bezier

    An introduction to this week's activities on quadratic relations and functions.

  • Painting of Galileo
    Galileo's ball

    What happens to an object, like a ball, when it falls, or better yet, if you toss it in the air? Galileo was the first to understand the answer.