Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.
Graph of a polynomial and its 7 zeroes
One polynomial, seven zeroes

Factors of quadratic polynomials and zeroes

Quadratic functions are examples of polynomials, which have a pleasant arithmetic much like that of numbers. The question of factoring polynomials is particularly interesting. Descartes found an important relation between the zeroes of a polynomial, and linear factors of that polynomial.

In this step, we will

  • review basics of polynomial arithmetic

  • relate zeroes and factors of quadratics via Descartes theorem

  • give a proof of Descartes theorem.

Polynomials and their arithmetic

A polynomial is a general algebraic expression made from powers of mixed with arbitrary coefficients, such as

The degree of a polynomial is the highest power of that appears, so that has degree and has degree . The coefficients of are and corresponding to and respectively.

There is an arithmetic with polynomials: addition or subtraction is just addition or subtraction of the corresponding coefficients. For example

Multiplication by a number is also performed on all of the coefficients independently

Multiplication by increases the exponent of all the ’s by one.

Finally, multiplication by a polynomial combines these operations.

Q1 (E): If and then determine the polynomials i) ii) and iii) .

Q2 (E): If and then determine the polynomials i) ii) and iii) .

Factoring polynomials

Sometimes polynomials can also be divided: just like numbers, this occurs most smoothly when one polynomial is a multiple of the other.

For example you will all know the factorization

In this case we say that is a multiple of , and that equivalently is a factor of .

Natural numbers factor uniquely (up to rearrangement) into primes, for example

So too a polynomial factors uniquely (up to rearrangement) into irreducible polynomials that do not have proper factors (factors aside from the trivial factors of and the polynomial itself). If we consider only polynomials with real coefficients, then the irreducible factos can be linear or quadratic.

Given any two linear polynomials and their product is the quadratic polynomial

Please check that you understand completely how the arithmetic works here! A rather deep and interesting problem is the reverse: given a quadratic polynomial, how can you write it as a product of linear factors.

Q3 (M): I have multiplied two linear factors together to get the quadratic polynomial

What were my two linear polynomials?

Factoring challenge

Please take two linear factors, and multiply them, and challenge your fellow participants to find the factors. And also try to find the factors of at least one of your fellow course mates quadratic.

Zeroes of a quadratic polynomial

If is a polynomial, then a zero of is a number with the property that . In other words, we are solving the equation . The basic technique for solving this kind of quadratic equation goes back to the ancient Hindus.

If we look at a table of values for , we can find such zeros:

-3 80
-2 63
-1 48
0 35
1 24
2 15
3 8
4 3
5 0
6 -1
7 0
8 3
9 8
10 15

We see that the zeroes of are and . However we have to consider ourselves lucky here: not every quadratic has zeroes that can be found so easily.

We could also find the zeroes graphically, at least approximately, by plotting the corresponding polynomial function

Graph of p(x)=x^2-12x+35 with zeroes marked

The connection with factors

We say that the polynomial has a linear factor when for some other polynomial . Descartes realized that the zeroes of were intimately connected with its linear factors. Note that we can write

and this explains why this polynomial has zeroes and .

Q4 (E): What are the linear factors of ?

Now we come to a major theoretical insight of Descartes.

Theorem (Descartes’ Factor Theorem) If is a polynomial, then has a zero precisely when is a factor of .

Note that we are using the term ‘precisely when’ to mean that there is a two-way implication here:

  • if has a zero then is a factor, and
  • if is a factor then has a zero .

We are getting two statements for the price of one!

Examples with Descartes’ Factor Theorem

To illustrate the Theorem, let’s look at some examples. The polynomial factors has zeroes and , and factors as

Another example: the polynomial factors as

and so it has zeroes and .

Although we like to give examples with integers, fractions are also possible.

Q5 (M): What are the linear factors of ?

It is not always the case that a polynomial has zeroes, and hence factors. The equation has no real solutions. Hence the polynomial has no linear factors.

Q6 (C): How many linear factors does the polynomial have whose graph is shown in the image to this step?

A proof of Descartes theorem (advanced)

Why is Descartes theorem true? If you have some stronger background, we invite you to follow the argument for quadratic polynomials. In fact the same proof applies more generally.

Proof: If is a factor of , it means that for some other polynomial . In that case if we substitute we have which means that so that yes, is a zero of .

Now suppose that is a zero of , so that then

So , which means that is a factor of . QED.



i) The sum is .

ii) The difference is .

iii) The product is .


i) The sum is .

ii) The difference is .

iii) The product is

A3. The factorization is:

How could we get that? We need to find two numbers that multiply to , and two other numbers that multiply to such that the sum of products of two of them with the other two is . It certainly appears that trial and error are needed!

A4. The linear factors of are and .

A5. The linear factors of are and .

A6. The polynomial visually has zeros at and . So according to Descartes’ theorem, it will have factors and . So a good guess for the polynomial might be:

Share this article:

This article is from the free online course:

Maths for Humans: Linear and Quadratic Relations

UNSW Sydney

Get a taste of this course

Find out what this course is like by previewing some of the course steps before you join:

  • A pair of Witchetty Grubs
    Australian bush tucker

    Adventurer Bear Grylls has claimed that, "Pound for pound, insects contain more protein than beef". Let's investigate!

  • The Cartesian plane and the beauty of graph paper
    The Cartesian plane and the beauty of graph paper

    The Cartesian plane, modelled by a sheet of graph paper, is fundamental for much of modern mathematics. Norman Wildberger explains the basics.

  • Quadratics from Apollonius to Bezier
    Quadratics from Apollonius to Bezier

    An introduction to this week's activities on quadratic relations and functions.

  • Painting of Galileo
    Galileo's ball

    What happens to an object, like a ball, when it falls, or better yet, if you toss it in the air? Galileo was the first to understand the answer.

Contact FutureLearn for Support