Optimization models
Equation (2) represents equality constraints covering all constraints that have to hold with equality (eg, flow conservation constraints or temporal balances) and definitions.
Equation (3) represents inequality constraints covering upper and lower limits (eg, production capacities). Lower equal and greater equal formulations can be transferred into each other by multiplying the constraint by -1.Note that you will not necessarily need all types of constraints for all models. Even if the detailed design depends on the underlying focus of your model, the overall model layout will always follow the above-described structure. For example, if you want to design a market model you will need constraints for the supply side, the demand side, and their market interaction. The structure of optimization models makes it easy to add or withdraw elements from a model by simply changing the formulation of the side constraints (ie, adding a further technical restriction).Optimization models are often used to represent benchmark market conditions. They can easily obtain least-cost or welfare maximizing solutions that correspond to a perfect competitive market environment. Many large scale, bottom-up energy market models follow an optimization approach and include several technical side constraints to capture the underlying energy conversion and transport mechanics.
Recommended readings
In the literature recommendation below, you will find a simple natural gas market model (Neumann et al. 2009) and an electricity network model (Leuthold et al. 2008) examples. Both models follow a welfare maximizing approach. In the gas model, the constraints capture the gas transport via pipelines, ship (both require a network topology), and intertemporal storage. In the electricity model, the physics of power flows have to be included (again requiring a network topology) as well as power plant characteristics (introducing binary variables, more on this in Week 5) and pumped storage dynamics. Market models following those two examples are typically relatively easy to design as they have a limited set of needed equations. Nevertheless, they allow us to analyse and evaluate market challenges and thereby provide a good starting point for numerical modelers.Neumann, A. et al. (2009). InTraGas – A Stylized Model of the European Natural Gas Network. Dresden University of Technology.Leuthold, F. et al. (2008). ELMOD – A Model of the European Electricity Market. Dresden University of Technology. (Journal Version: Leuthold, F. et al. (2012). A large-scale spatial optimization model of the European electricity market. Networks and spatial economics, 12(1), pp. 75-107.)For those who want to get more familiar with GAMS as modeling software: the initial GAMS tutorial uses a simple transport optimization problem to introduce the different features of GAMS.Exploring Possible Futures: Modeling in Environmental and Energy Economics

Our purpose is to transform access to education.
We offer a diverse selection of courses from leading universities and cultural institutions from around the world. These are delivered one step at a time, and are accessible on mobile, tablet and desktop, so you can fit learning around your life.
We believe learning should be an enjoyable, social experience, so our courses offer the opportunity to discuss what you’re learning with others as you go, helping you make fresh discoveries and form new ideas.
You can unlock new opportunities with unlimited access to hundreds of online short courses for a year by subscribing to our Unlimited package. Build your knowledge with top universities and organisations.
Learn more about how FutureLearn is transforming access to education