Skip main navigation

New developments in radiation therapy

Listen to Philip Poortmans New developments in radiation therapy
My name is Phillip Poortmans. I’m medical doctor, and my specialty is radiation oncology. So, currently– I’m Belgian. I worked for 25 years in the Netherlands. I moved to France last year. I’m now head of the department of Institut Curie in Paris.
New developments, as we see them, are getting to our dose, radiation dose, more precisely at the place where it should be delivered and, at the same time, delivering lower doses at places that either do not need radiation or even to be protected from radiation. For example, in the past, we used to treat all patients with– this is my specialty– breast cancer in a very similar way. They all received whole-breast irradiation with a higher dose to the primary tumour bed with lymph node irradiation if there was lymph node invasion in the axilla.
Now we are aiming much more precisely, based on factors that include patient-related factors, tumour-related factors, but also other treatment-related factors– surgery, systemic therapy, such as chemotherapy, hormonal therapy, targeted therapy, immunotherapy. And we look, for every patient, what is the zone where the cancer is at highest risk of recurrence. There we will focus the dose. The zone with a lower risk for recurrence, we will lower the dose. And the zones where the risk of recurrence are really low, there we will limit the dose or even do not give any radiation at all.
Technology that is becoming more available or just brought to the market, I will name two examples. First is particle therapy. Proton therapy is not new. It exists for more than 50 years, but it is only since recently that the capacity of proton therapy increases theramedically, thanks to technological progress. And the other one is the combination of a hybrid machine in which a LINAC, a linear accelerator to treat cancer, is combined with an MRI, Magnetic Resonance Imaging, in which you can in a completely other and better way visualise what you are treating, even during the treatment.
Targeted therapy, in contrast to the most existing therapy– most existing therapy, you give it to whatever patient. And, often, it works. And, often, it does not work, but you have no clue why it works in certain patients, why it doesn’t work in other patients. The first targeted treatments were, for example, radioactive iodine in thyroid cancer because thyroid cancer takes it up. And you treat from within the thyroid gland. So you target the cancer cells. And a little bit closer to what we currently call targeted therapy is hormonal therapy in, for example, breast cancer where we, already many years, do not give it to patients that have a tumour that is not hormone responsive.
So it limits the therapy to the patients that have a higher likelihood of responding. Modern targeted therapy goes further. It is based on analysis of the proteins. It’s based on analysis of the genes. It’s based on tumours and even, often, fragments of the tumour in the blood to predict whether or not a certain patient can benefit from a certain patient– from a certain treatment. And, that, we call targeted treatment. Up to now, targeted treatment cannot cure the patient. There’s also limitations. It can have limitations because of the dose toxicity. It can if limitations because not all cancer cells are sensitive to the targeted therapy. So we need also radical treatments to combine it with.
And the most known and most efficient radical treatments are surgery and radiation therapy. So, by combining radiation therapy with targeted therapy, we can limit the radiation to really the core of the disease and use the targeted therapy to increase the effectiveness of radiation on the one hand. So we can lower the dose and lower the risk for side effects, but also to treat subclinical disease that we cannot see with our imaging, MRI, CT scan, and that is outside of the irradiated fields.

Advances in radiation therapy delivery and technology mean that higher doses of radiation therapy can now be specifically directed to regions that need it. Other areas, where the risk of recurrence (return) of the cancer is low, can be protected.

Radiation therapy treatments are now more personalised to each individual patient. They can now take into account tumour and patient-specific factors as well as the influence of other treatments including surgery, chemotherapy, targeted therapy and immunotherapy.

Currently two of the most important developments in the field of radiation oncology are the:

  • Increase in availability of proton therapy, which is particularly important in the management of some childhood cancers.
  • Advent of the MRI-linear accelerator. This combines an MRI unit with a linear accelerator and allows real-time imaging of the tumour, increasing treatment accuracy.

A Mevions 250 Proton Therapy Machine and an MRI LINAC machine Left: Mevions 250 Proton Therapy Machine. Right: MRI LINAC machine. Credit: Romina.cialdella on Wikicommons and Elekta

However, radiation therapy does not solely rely on these advanced developments. Effective radiation therapy treatment can be delivered to the majority of patients using traditional linear accelerators.

Advanced molecular analyses of patients’ genes can provide valuable information as to what patients are likely to most benefit from a particular treatment. This is known as targeted therapy. Targeted therapies are often combined with radiation therapy in order to maximise the management of a patient’s cancer while minimising side effects and improving quality of life.

This article is from the free online

An Introduction to Radiation Oncology: From Diagnosis to Survivorship

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now