Contact FutureLearn for Support Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Skip to 0 minutes and 7 secondsMedical imaging produces an enormous amount of data used in diagnostics and for surgery planning. Professor Marc Metzger works with shape modelling daily.

Skip to 0 minutes and 30 secondsSeen from today, older methods of data processing were time-consuming and heavy-handed.

Skip to 0 minutes and 42 secondsShape models help to address the problem efficiently and with high accuracy, as they allow taking into account statistical data of a given population.

Skip to 0 minutes and 54 secondsIn our first case, Patient X has suffered a trauma. Professor Metzger needs to design an implantable metal plate that immobilises the fracture site while it heals. He imports data belonging to this patient from the so-called PACS. The acronym stands for the Picture Archiving and Communication System of the hospital. Professor Metzger uploads the data to a portal where it is rendered as a visualisation in three dimensions.

Skip to 1 minute and 28 secondsThe doctor places landmark points on the model, distorting it as he adjusts it to the patient's needs.

Skip to 1 minute and 45 secondsThe system corrects the distortion, taking into account the statistical distribution of the given shape in a database of representative samples. Thus the accuracy of the model is improved.

Skip to 2 minutes and 0 secondsProfessor Metzger then designs a metal plate to fix the fracture. He then orders the implantable plate from the lab.

Skip to 2 minutes and 14 secondsIn this way, statistical shape modelling helps to improve the accuracy of a given implant. It has also speeded up the procedures in preparation for a surgery.

Skip to 2 minutes and 27 secondsThe next case shows how Professor Metzger can do even more, preparing a custom designed splint for a patient.

Skip to 2 minutes and 37 secondsIn this case, the patient suffers from dysgnathia, a conspicuous abnormality extending to the jawbones. Again, Professor Metzger imports data from the Picture Archiving and Communication System. This time, he performs a second import from the 3D surface scanner used for measuring the patient. He then fuses the images of these two data sets. In the next step, the model showing the deformed jaw is segmented. The segments are then brought into the corrected position, as they will be during surgery.

Skip to 3 minutes and 19 secondsProfessor Metzger imports the template of the dental splint that will fix the segments to support healing and exports all information.

Skip to 3 minutes and 32 secondsIn the next step, the splint will be adjusted and designed anew.

Skip to 3 minutes and 48 secondsThe shape is then sent to the 3D printer.

Skip to 3 minutes and 55 secondsThe surgical support is produced directly in the doctor's office.

Skip to 4 minutes and 6 secondsAs these two cases show, statistical shape modelling has become an efficient tool for doctors. It is cost efficient and effective, as it allows adapting devices to a given patient in a short time. It also helps to prepare surgery accurately.

Skip to 4 minutes and 26 secondsWith 3D printing technology on the rise, the care of patients will benefit immensely from modelling.

A visit to surgeon Dr Metzger

After studying a lot of theory and working through a lot of Scalismo Lab exercises, we now invite you to have a look at the application of shape modelling technology in medical practice.

We visited surgeon Dr Marc Metzger in his office in the University Hospital in Freiburg/Germany and watched him at work: diagnosing a trauma, preparing surgery and even designing splints and implants - all with the help of shape models!

This video is from the free online course:

Statistical Shape Modelling: Computing the Human Anatomy

University of Basel