Skip main navigation

New offer! Get 30% off one whole year of Unlimited learning. Subscribe for just £249.99 £174.99. New subscribers only. T&Cs apply

Find out more

Analyzing functional MRI Neuroimaging data

Pamela Douglas from UCLA introduces the problem of classifying functional MRI data, and describes the ADHD200 Global Machine Learning Competition.

Pamela Douglas from UCLA introduces the problem of classifying functional MRI data. An FMRI scan records signals over time from 100,000 voxels covering the brain region, which creates a huge 4-dimensional dataset. The ADHD2000 machine learning competition is to predict a subject as either “Typically developing (TD)” or “Attention deficit hyperactivity disorder (ADHD)” using data from 1000 subjects that includes both demographic and structural neuroimaging features. Pamela’s team calculated 100,000 functional neuroimaging attributes from the raw data, and was placed 3rd using a voted perceptron learning algorithm. Ironically, the winning team ignored the neuroimaging features and used demographic data only! The video also introduces Haxby’s classic FMRI dataset, collected while subjects viewed images from 8 object categories. You will use these in the Quiz that follows.

This article is from the free online

Advanced Data Mining with Weka

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now