# Mathematical Expression of Climate feedbacks

## 4.4

### The case of no feedbacks

If temperature is the only climatic parameter that will change the the change in net radiation at the top of the atmosphere due to a change in equilibrium surface temperature is given by Stefan‐Boltzmann’s Law which states that the radiation from a body that absorbs all incoming radiation is depending on the temperature in the \(4^{th}\) power. \(E_{BB} = \sigma T_e^4\) (\(W/m^2\)) Where \(T_e\) is the emission temperature of a blackbody (the temperature the body would have if it absorbed all emission) and \(\sigma\) Stefan‐Boltzmann’s constant. If we further assume that the sensitivity of the equilibrium surface temperature to a change in radiative forcing is the same as the sensitivity of the emission temperature ( \(\partial T_e / \partial T_{eq} = 1\)) we get: \(\frac{T_{eq}}{dQ}=\frac{\partial T_{eq}}{\partial Q} \bigg \rvert _{direct}=-\bigg ( \frac{ \partial R_{toa}}{ \partial T_{eq}} \bigg ) ^{-1} =-\bigg ( \frac{ \partial R_{toa}}{ \partial T_{e}} \frac{ \partial T_{e}}{ \partial T_{eq}} \bigg ) ^{-1} =-\bigg ( \frac{ \partial ( \sigma T_{e}^{4})} { \partial T_{e}} \frac{ \partial T_{e}}{ \partial T_{eq}} \bigg ) ^{-1} =\frac{1}{4\sigma T_{e}^{3}}\) Inserting the emission temperature of the earth‐atmosphere system (255K) we get \(\frac{T_{eq}}{dQ}=\frac{\partial T_{eq}}{\partial Q} \bigg \rvert _{direct}=0.26\) [\(K/(W/m^2)\)] In other words, a 1 \(W/m^2\) change in radiative forcing will induce a 0.26\(^{\circ}C\) equilibrium temperature change.### Including feedbacks

If other variables than temperature are changing the calculation of \(\partial R_{toa} / \partial T_{eq}\) is more complicated. \(\frac{T_{eq}}{dQ}=-\frac{1}{\bigg [ \frac{\partial R_{toa}}{\partial T _{eq}} \bigg \rvert _{direct} + \sum_{i=1}^{N} \frac{\partial R_{toa}}{\partial T_{eq}}\bigg \rvert _{x_{i}} \bigg ]}\) Where \(x_{i}\) are other climatic parameters such as such as clouds, water vapour, snow, ice etc that again affect temperature. In the literature the different terms in the denominator are often given as feedback parameters (even if the first term, the direct response, is not a feedback) defined as: \(\lambda_{x_{i}}=-\frac{\partial R_{toa}}{\partial T_{eq}} \bigg \rvert _{x_{i}}\) The unit for the feedback parameters are \(W/(m^2K\)) and indicate how much the net energy at the top of the atmosphere is changed for a given feedback (in other words how much more or less energy remains in the earth-atmosphere system) for a 1 \(^{\circ}C\) change in temperature . Using this notation a negative \(\lambda _x\) implies that the feedback is negative and positive values that the feedback is positive. Note that in the literature \(\lambda _x\) is sometimes defined without the minus sign. Using the above definition we get: \(\frac{T_{eq}}{dQ}= -\frac{1}{\bigg [ \lambda_{direct} + \sum_{i=1}^{N} \lambda _{x_{i}} \bigg ]}\) Inserting this into equation 1 gives \(\triangle T _{eq} \approx -\frac{1}{\bigg [ \lambda_{direct} + \sum_{i=1}^{N} \lambda_{x_{i}} \bigg ]} \triangle Q\) Thus the temperature change can be approximated by calculating the different feedback parameters. The table below gives typical values for the different feedback parameters.Table: Strength of individual feedback parameters [\(W/(m^2K\))] from different state of the art climate models. Values taken from Soden and Held (2006).

### Example: Calculating climate sensitivity due to doubling of CO\(_2\)

If radiative forcing of CO\(_2\) was given as: \(RF_{co_{2}} = \alpha ln(C / C_0)\) where \(\alpha =5.35, C_o\) is the reference CO\(_2\) concentration (usually takes as 280 ppm) and C the CO\(_2\) concentration. C and C0 must be given in ppm (parts per million). A doubling of CO\(_2\) then gives a radiative forcing of \(3.7 W/m^2\) which together with the average values from the table above we can calculate the temperature change using: \(\triangle T _{eq} \approx -\frac{1}{\bigg [ \lambda_{direct} + \sum_{i=1}^{N} \lambda_{x_{i}} \bigg ]} \triangle Q\) The no feedback result: \(\triangle T_{eq} \approx -\frac{3.7}{-3.2} =1.15 ^{\circ}C\) With feedbacks: \(\triangle T_{eq} \approx -\frac{3.7}{-3.2 + 1.8 – 0.84 + 0.69 + 0.26} = 2.8^{ \circ }C\)## Our purpose is to transform access to education.

We offer a diverse selection of courses from leading universities and cultural institutions from around the world. These are delivered one step at a time, and are accessible on mobile, tablet and desktop, so you can fit learning around your life.

We believe learning should be an enjoyable, social experience, so our courses offer the opportunity to discuss what you’re learning with others as you go, helping you make fresh discoveries and form new ideas.

You can unlock new opportunities with unlimited access to hundreds of online short courses for a year by subscribing to our Unlimited package. Build your knowledge with top universities and organisations.

Learn more about how FutureLearn is transforming access to education