Skip main navigation

Where does the salt go?

Professor Rachel Mills explains the difference in the saltiness of the ocean compared to rivers.
6.7
RACHEL MILLS: So the next question is, where does the salt go? We can define a concept of residence time which is essentially how much time there is between something being supplied to the ocean and it being removed from the ocean. As you can calculate the residence time, for example, for the sodium and chloride in the ocean. And you will find that it’s in excess of something like 100 million years. So there’s 100 million years between being supplied by rivers to the ocean and being removed to the sediments. But the oceans themselves are something like 4 billion years old. So there’s a huge amount of geological time for the salt to go around and around the system.
40.6
And the oceans are not saturated with salt because it’s being removed via some process. Now it turns out the process for removing salt from the oceans is very like what the Romans were doing to produce salt we put in our food. It is essentially evaporation of seawater in hot arid parts of the ocean to form what we call evaporite deposits which essentially suck the salt out of the ocean and keep it from building up to high levels. So if you calculate the residence time for the minor components in seawater, you’ll find that they’re much shorter, maybe only tens of millions of years.
71
And this means that something must be removing the minor components much more effectively, much more quickly, and therefore they don’t build up to the high levels like sodium chloride. So for example, organisms will precipitate calcium carbonate skeletons, and these calcium carbonate skeletons will then sink through the water column and form sediments on the sea floor. And these sediments ultimately will become the limestone deposits we see on land. So this effectively keeps the calcium and carbonate content of the ocean well below that of the sodium chloride content. So one of the major processes that removes salt from seawater is hydrothermal circulation through young ocean crust.
107
So cold seawater will penetrate into the sea floor through the cracks and fissures at the sea floor, driven by that magma supply at depth where the temperatures are incredibly high. So as the sea water penetrates down into the rock, it gets hotter and hotter and chemical reactions will be driven by the temperature gradient and by the high pressure underneath the crust. So the first reaction that happens is the magnesium, that major element in seawater, is stripped out to form clay minerals in the crust. So magnesium is stripped from seawater. Following this, we get removal of the sulphate from seawater which precipitates as a white mineral will which we call anhydrite in the ocean crust.
145.5
So the chemical composition of our fluid is changing. The fluid gets more acidic as it strips protons from the rocks, which in turn it becomes more corrosive towards the rock, and metals are stripped out and sulphides are dissolved from the rock so the fluid stinks of hydrogen sulphide. So as that flow gets close to the magma supply, it gets hotter and hotter and hotter, maybe up to 400 degrees Celsius.
172.3
At that point, it’s very close to boiling, and it becomes very buoyant and is forced back up through the crust to the sea floor where it erupts as the black smokers we’ve seen, these vents that gush out at metres per second on the sea floor, transporting with them metals and sulphide from the crust into the ocean and forming the chimney features that we call black smokers.
So now that you have considered the vast quantities of salt that are present in the ocean, let’s get back to why that is.
As you saw in previous videos, the inputs of water to the ocean have a very different composition and only contain a small amount of salt. Rain water and rivers carry small amounts of dissolved salts to the ocean where they are mixed into the vast ocean by the global circulation. This has been going on for billions of years. In this video, Rachel introduces the concept of residence time: the amount of time that a chemical component spends in the ocean before being removed from it. Many river components are removed relatively quickly by biological organisms and other processes, leaving the various salts to build up over time as they are removed more slowly. Rachel also explains how hydrothermal vents are responsible for one of the major process which modifies the content of seawater.
Salt is often thought of as sodium and chloride, but only because it is the most abundant type of salt in the ocean. In fact, there are many types of salt in seawater, including chlorides, sulphates and carbonates. The mineral “halite” (sodium chloride) is often the first to precipitate when seawater evaporates because it is so highly concentrated. But many other minerals, for example, “sylvite” (potassium chloride) and “gypsum” (calcium sulphate), will also precipitate from seawater. We see this in the geological record as mineral deposits on land where oceans once existed but have since dried up entirely and left their salts behind. Here’s a link to some impressive looking salt deposits of all shapes and sizes – enjoy!
This article is from the free online

Exploring Our Ocean

Created by
FutureLearn - Learning For Life

Our purpose is to transform access to education.

We offer a diverse selection of courses from leading universities and cultural institutions from around the world. These are delivered one step at a time, and are accessible on mobile, tablet and desktop, so you can fit learning around your life.

We believe learning should be an enjoyable, social experience, so our courses offer the opportunity to discuss what you’re learning with others as you go, helping you make fresh discoveries and form new ideas.
You can unlock new opportunities with unlimited access to hundreds of online short courses for a year by subscribing to our Unlimited package. Build your knowledge with top universities and organisations.

Learn more about how FutureLearn is transforming access to education