Skip main navigation


In this article Dr. Yossi Elran introduces advanced straight-strip flexagons
Banner with Advanced Flexagons written on it
© Shutterstock
This week we’re going to take a look at advanced flexagons and we’ll start with two important flexagons, the straight-strip, cyclic, hexa-hexa-flexagon (6-6-flexagon), and the straight-strip, cyclic, tetra-octa-flexagon (4-8-flexagon).

Notice that I have to use a lot of words to describe what we’re going to make, and I’m still not sure that you have a clear picture of what we are making! In any case, first, we’re going to take a straight strip of 38 equilateral triangles, 19 on each side, coloured with 6 different colours and fold it into a hexagon to form a hexa-hexa-flexagon with 6 faces, one for each colour. You have already seen the Tuckerman diagram for this flexagon in the quiz! We’ll explore the flexagon and look at some of its interesting properties.

Our second flexagon will also be made from a straight strip. This time, the strip has 34 isosceles right-triangles, 17 on each side, that are coloured using 4 different colours. This strip can be folded into a four-faced square flexagon with 8 triangles on each face. Let’s get going then!


Any questions? Feel free to ask and don’t be shy 🙂

© Davidson Institute of Science Education, Weizmann Institute of Science
This article is from the free online

Flexagons and the Math Behind Twisted Paper

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now