Skip main navigation

Covariance functions

In this video Marcel Lüthi explains the basic mathematical properties a covariance function needs to fulfil.

Using a Gaussian Process model to model the shape variations within a shape family, we have two parameters to characterise what constitutes a likely shape: the mean function and the covariance function.

In this video we discuss the mathematical properties of a valid covariance function and show how we can define interesting covariance functions for modelling shapes, even when we have no example shapes available to learn the covariance function from data. This knowledge will greatly enhance our modelling ability and allows us to overcome limitations of classical shape models.

This article is from the free online

Statistical Shape Modelling: Computing the Human Anatomy

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now