Want to keep learning?

This content is taken from the Keio University's online course, Understanding Quantum Computers. Join the course to learn more.

Big company labs & development

Rather than promote a particular company, this article is intended to give you a sense of the breadth of commitment to the overall area in the traditional players in corporate research.

Perhaps the longest-standing, most prestigious industrial research effort belongs to IBM. Charles Bennett, who invented or co-invented reversible classical computing, quantum teleportation, quantum key distribution, important forms of quantum error correction and error detection, has spent almost his entire career at T.J. Watson Research Center. David DiVincenzo, who laid out important guidelines for building quantum computers, spent many years there. IBM was also the site of some of the very earliest quantum computing experiments, and continues to be a leader in superconducting systems. (IBM actually has a very long history with superconducting materials, and has considered building classical computers using them at various times.) IBM has made a five-qubit superconducting system and a sixteen-qubit system available on the web for anyone to use, with an easy-to-use graphical interface for programming.

Keio has recently joined IBM’s Q Network, through our Keio Quantum Computing Center, providing our researchers access to their two 20-qubit systems.

Bell Labs, now part of Nokia, produced the two most famous quantum algorithms from the 1990s: Peter Shor and Lov Grover both worked there. Bell Labs also has a strong experimental contingent.

In Japan, NTT and NEC both had experimental groups working on the fundamental science of quantum dots and superconductors, respectively, for decades, and transitioned smoothly into leading industrial players in quantum information. Toshiba and Hitachi also have had long-standing research efforts. These Japanese companies also have laboratories in the United States and the United Kingdom.

Companies more traditionally associated with software and Internet services have also been involved in quantum computing research for a decade or more. Microsoft has several efforts, dating back to 2005. The Station Q team in Santa Barbara is researching a way of organizing matter such that quantum information is preserved indefinitely even without active error correction. The QuArC group in Redmond, headed by Krysta Svore, is developing software tools for programming and simulating quantum computers, as well as studying quantum chemistry and other algorithms. They also have an ongoing interest in evaluating D-Wave’s machines and researching adiabatic quantum computing.

Google made a big splash in quantum computing by teaming with NASA to acquire one of the first D-Wave machines in 2013, ostensibly to work on quantum artificial intelligence. It has maintained a steady presence in this area for years, and followed on by hiring John Martinis and his team away from UC Santa Barbara. In June 2017, Google announced that it is testing a 20-qubit superconducting chip.

In addition to these well-known giants, important but smaller technology companies that often develop specialized systems for the U.S. government have been working in the area for years. BBN, famous for building the hardware for the first ARPANET experiments in the late 1960s, teamed with Boston University and Harvard to build the first quantum key distribution (QKD) testbed for DARPA, and has worked on quantum computing hardware. MITRE has had an effort for some years, collaborating with Princeton University. HRL, where the first laser was built, has a large experimental project using quantum dots, and in recent years has published results showing improvements in fabrication and fidelity for both computing and communication.

A recent major entrant into the field is Intel, which has recently partnered with TU Delft in the Netherlands for quantum hardware research using silicon.

In China, Alibaba and Baidu are two extremely successful Internet businesses. Both have recently anounced efforts in quantum computing. In March 2018, Alibaba announced that its 11-qubit superconducting system would be available on the web, but we are not aware of a publicly reachable system as of fall 2018. At the same time, Baidu announced the creation of its Quantum Computing Institute. Both companies will be investing large sums of money in the coming years.

As of this writing, Intel (working with TU Delft), IBM, and Google all have larger quantum computers under testing: 49, 50 and 72 qubits, respectively.



おそらく最長で、最も権威のある産業研究の努力をしたのはIBMです。リバーシブル・クラシック・コンピューティング、量子テレポーテーション、量子鍵配送、重要な形式の量子誤り訂正と誤り検出の発明あるいは共同発明したCharles Bennettは、キャリアのほとんどすべての期間をT.J. ワトソン研究センターで過ごしました。量子コンピューターにおける非常に重要なガイドラインを策定したDavid DiVincenzoも長年そこに所属していました。 IBMは、本当に初期の量子コンピューティングの実験が行われた場所であり、超伝導システムにおけるリーダーでもあり続けています。 (IBMは実際には超伝導材料で長い歴史を持ち、さまざまな時代にそれらを使用して従来型のコンピュータを構築することを検討してきました。)IBMはプログラミングに視覚的なインターフェースを導入し、誰でも簡単にウェブ上で使える5量子ビットの超伝導システムを作りました。

慶應義塾大学は最近、Keio Quantum Computing Centerを通じIBMのQ Networkに加わり、2つの20量子ビットシステムへのアクセスを提供しています。

Bell研究所(現在はNokiaの子会社)にはPeter ShorとLov Groverが在籍していました。彼らが1990年代に生み出した量子アルゴリズムは世界中で最も有名なものであり続けています。Bell研究所には実験をしている有力なグループもあります。


従来よりソフトウェアやインターネットサービスに関連してきた企業も、10年以上にわたって量子コンピューティングの研究に携わってきました。マイクロソフトでは2005年以来いくつかの取り組みを行っています。サンタバーバラ内のチームStation Qは、能動的なエラー修正を行わなくても量子情報が無期限に保存されるような物質を構成する方法を研究しています。 Krysta Svore氏が率いるレドモンドのQuArCグループは、量子コンピュータのプログラミングとシミュレート、量子化学やその他のアルゴリズムの研究のためのソフトウェアツールを開発しています。また、D-Waveの査定をし、断熱量子コンピューティングを研究することにも関心があります。

Googleは2013年、NASAと共にD-Waveの初期型を購入し、紙面を賑わせました。彼らは表向きには量子人工知能に取り組むために購入したと述べています。この領域では長年安定した存在感を保っており、その後にはJohn Martinisと彼の研究チームのカリフォルニア大学サンタバーバラ校からの引き抜きもそれに貢献しています。2017年6月、Googleは20量子ビットの超伝導チップをテストしており、年末までに49量子ビットのシステムを構築する予定であると発表しました。



中国では、AlibabaとBaiduの2社は成功したインターネットビジネスの会社として有名です。両者は最近、量子コンピューティングに関する取り組みを発表しました。 2018年3月、Alibabaは、11量子ビットの超伝導システムをWeb上で利用可能にすると発表しましたが、2018年秋、まだ公開システムに至っていません。同時に、BaiduはQuantum Computing Instituteの創設を発表しました。 両社は今後数年間に多額の資金を投入する予定です。

この記事の執筆時点では、Intel(TU Delftと協力している)、IBM、Google、いずれもテストを目的とした大型量子コンピュータを所有しています。それぞれ49量子ビット、50量子ビット、72量子ビットです。

Share this article:

This article is from the free online course:

Understanding Quantum Computers

Keio University