Contact FutureLearn for Support
Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Skip to 0 minutes and 10 secondsHi. Welcome back. In this lecture, I will explain you the inductive miner, which is again, an improvement on the alpha and heuristics miner. And we're still trying to bridge this gap between the data and the discovery of a hopefully sound process model. So what are the characteristics of the inductive miner? Well first of all, it guarantees to produce a sound process model. Then how would works, it finds first a prominent split in an event log, then detects how these splits are related. And then continues on both splitted logs. And I'll explain both points in more detail, starting with soundness. So the inductive miner internally does not work on Petri nets. It actually uses process trees.

Skip to 0 minutes and 58 secondsAnd from this Petri net I'll show you how the process tree is constructed. What can we observe in this Petri net. We see that first activity a is executed, then three branches in parallel, then a choice between e and f, followed by g. We can encode this using the sequence operator, which indicates that you first do a, then a block, then another block, and then g. So how do we encode this first block? So we introduce the parallel operator and activities b, c, and d are in parallel. And a parallel operator or symbol is the a without a horizontal bar. Then the next block is activities e and f in a choice. So you exclude either e or f.

Skip to 1 minute and 43 secondsWe used the x operator for exclusive choice. You exclusively choose for either e or f. So the process tree shown on the top actually describes the same behavior as the Petri net on the bottom. However, whatever you do in a process tree, the tree always represents a sound process model. So how does the inductive miner get to a process tree? Well, it repeatedly splits the event log. So again, this is our example event log. And it finds the most likely split. In this example for instance, between a and a subsequent activities. Now it analyzes both split logs. Well, the split log on the left side of the bar is easy.

Skip to 2 minutes and 33 secondsIt only contains a's, so we can say we do always a followed by something else. Well, what is this something else? That's this part of the event log. What's the most prominent split we can make? Well, between g. We do something and then we do g. So we can add g to the sequence operator. And now we have to analyze what's happening in between, what's happening in between a and g. Well, another prominent split we can make is this one. There we have two split logs again. And in one split log we can see that every trace contains either e or f. Well, we can encode this as such, and remove it from the split log.

Skip to 3 minutes and 18 secondsNow we have to analyze these traces with length 3. Well, what do we observe? Every trace contains activities b, c, and d, but in any order. Well, this is parallelism. Hence, we introduce the parallel operator between these two activities. This, in a slightly simplified way, is how an inductive miner works. So this process 3, I hope you can see that can be translated to a Petri net. And that's what the inductive miner presents to you in problem. So let's analyze this Petri net that inductive miner will discover, based on this input data. Again, let's take our checklist. Well, and as I already explained, and I hope you can verify, this process model is sound. So check.

Skip to 4 minutes and 4 secondsCan we replay all the data that we put in? In this example, yes. So every trace that we put in that we learned to model from, can be replayed in this Petri net. However sometimes the inductive miner makes a decision where the input data cannot be replayed anymore, especially in real life data, this is actually useful. But in this example, replay fitness is perfect. The precision of this process model is also quite OK. It allows for a bit more behavior, but not too much. Similarly, generalization is OK since it correctly derived that particular behavior is possible, although not directly observed. And simplicity is also good since it's a nicely structured model that's easy to read, especially from left to right.

Skip to 4 minutes and 46 secondsSo in this lecture, I've shown you the inductive miner, which is the third algorithm we discussed that is able to do process discovery. In the next lecture, I will show you the inductive miner in prom, and I will perform some real life data. And then we're almost ending week 2, aiming at process discovery. So I hope to see you in the next lectures.

Inductive miner

In this step we explain the basics of the inductive miner.

Share this video:

This video is from the free online course:

Introduction to Process Mining with ProM

Eindhoven University of Technology

Course highlights Get a taste of this course before you join:

  • Introduction

    Introduction to process mining: recognizing event data, what is process mining and what can process mining analyse.

  • Installing ProM lite
    Installing ProM lite

    In this step we show how to find and install the free and open source process mining tool ProM lite.

  • Using ProM lite
    Using ProM lite

    In this lecture we show the basic concepts and usage of ProM (lite): the resource, action and visualization perspectives.

  • Event logs
    Event logs

    In this lecture we explain what an event log is and how it is structured. We also explain the most common attributes found in an XES event log.

  • Event logs in ProM
    Event logs in ProM

    In this lecture we show you how you can load an event log in ProM and how you can get initial insights in the contents.

  • Converting a CSV file to an event log
    Converting a CSV file to an event log

    Most data is not recorded in event log format. In this video we explain how a CSV file can be converted to an event log.

  • Exploring event logs with the dotted chart
    Exploring event logs with the dotted chart

    After loading an event log into ProM it is important to apply the dotted chart to get initial process insights before process models are discovered.

  • Filtering event logs
    Filtering event logs

    Before good quality process models can be discovered the event log data needs to be filtered to contain only completed cases for instance.