Skip main navigation

The Sun and the Earth’s Climate

What determines the climate of the Earth? Ultimately, the Sun, our nearest star. Solar energy is absorbed by the Earth’s surface, warming it and driving the weather patterns and therefore the climate that we observe. The only other source of energy at the Earth’s surface comes from the cooling of the interior of the planet, but this is about 2000 times smaller than the flux of energy we get from the Sun.
© University of Reading and Royal Meteorological Society

What determines the climate of the Earth? Ultimately, the Sun, our nearest star.

Solar energy is absorbed by the Earth’s surface, warming it and driving the weather patterns and therefore the climate that we observe. The only other source of energy at the Earth’s surface comes from the cooling of the interior of the planet, but this is about 2000 times smaller than the flux of energy we get from the Sun.

The Energy Outputs of the Sun and the Earth

With a surface temperature of just over 5,500°C (or 5,778K, where K stands for Kelvin, the international unit of temperature) the Sun emits a lot of energy into space. The temperature determines both how much energy it emits, and what form it takes (Planck’s Law describes this). In the case of the Sun, most energy is light – some shorter wavelength ultra-violet and some longer wavelength infrared radiation (heat) as you can see in Figure 1. Because the surface of the Earth is much cooler, 15°C (or 288K), the Earth emits much less energy into space.

In the graph in Figure 1, the scale on the vertical, Y axis for the Earth goes up to 1 compared to 300,000 relative units of energy for the Sun. Also, the Earth only loses infrared radiation (heat) to space, which has a much longer wavelength than the infrared radiation the Sun emits. If you look at the horizontal, X axis (wavelength) you can see a gap between the emission curves of the Sun and the Earth. The two curves never overlap. This means that, as the Sun’s and the Earth’s energy pass through the atmosphere, very different processes can operate on the two.

A line graph comparing the energy output of the Sun and the Earth. The x axis is labelled 'wavelength' and is measured in micro metres. There are 2 individual y axes on either side of the graph for each wavelength, they are both labelled 'relative units of energy'.

Figure 1: The energy output of the Sun (left) and the Earth (right). Both the amount of energy a body produces, and the wavelength of the energy (in this case, whether it is ultraviolet, light or heat) are determined by the temperature of the body.
© University of Reading and Royal Meteorological Society
This article is from the free online

Come Rain or Shine: Understanding the Weather

Created by
FutureLearn - Learning For Life

Our purpose is to transform access to education.

We offer a diverse selection of courses from leading universities and cultural institutions from around the world. These are delivered one step at a time, and are accessible on mobile, tablet and desktop, so you can fit learning around your life.

We believe learning should be an enjoyable, social experience, so our courses offer the opportunity to discuss what you’re learning with others as you go, helping you make fresh discoveries and form new ideas.
You can unlock new opportunities with unlimited access to hundreds of online short courses for a year by subscribing to our Unlimited package. Build your knowledge with top universities and organisations.

Learn more about how FutureLearn is transforming access to education