Skip main navigation

Hurry, only 2 days left to get one year of Unlimited learning for £249.99 £174.99. New subscribers only. T&Cs apply

Find out more

Tools of the trade: a further look into free radicals

An introduction into free radical mechanisms relating to the antioxiants in tea
A selection of carpentry tools hanging on the wall of a wooden workshop.
© University of York

The mechanism of the reaction between phenol and a H–O radical is shown below. For the abstraction of the hydrogen atom (in pink) by the hydroxyl radical (in green), the O–H covalent bond in phenol must be broken and a new covalent H–O bond in water must be formed, represented by three single-headed curly arrows.

Abstraction

The driving force for the reaction can be explained by bond strengths – the O–H bond in phenol is weaker than the O–H bond in water (i.e. a weak bond is broken in a reactant to form a much stronger bond in a product). Alternatively, you could consider the stabilities of the two radicals – the reaction progresses to convert a reactive radical into a more stable radical. The phenoxyl radical (PhO) is more stable than the hydroxyl radical because the unpaired electron can be spread around the benzene ring, through resonance. To show this, it is better to use the Kekulé structure of the benzene ring – as shown below, notice that the unpaired electron is stabilised by delocalisation.

delocalisation

Finally, radicals are destroyed when a covalent bond is formed from the reaction of two free radicals. This is called homolytic bond formation and is known as a termination step, because it converts reactive free radicals into non-radical products.

termination

To show the formation of a covalent bond between the oxygen (in blue) and hydrogen (in green), a single-headed curly arrow is drawn from each atom and they meet in the middle.

Because of their high reactivity, oxygen-centred free radicals, such as HO, can cause damage to cells in the human body, which can result in disease. We will learn more about this in the following section.

In summary

Initiation reactions form radicals
Propagation reactions convert radicals into different radicals
Termination reactions convert radicals into non-radicals

© University of York
This article is from the free online

Exploring Everyday Chemistry

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now