Skip main navigation

Hurry, only 2 days left to get one year of Unlimited learning for £249.99 £174.99. New subscribers only. T&Cs apply

Find out more

Linear algebra and polynomials

In this article we briefly introduce some of NumPy's linear algebra and
polynomial functionality.
© CC-BY-NC-SA 4.0 by CSC - IT Center for Science Ltd.

Linear algebra

NumPy includes linear algebra routines that can be quite handy.

For example, NumPy can calculate matrix and vector products efficiently (dot,
vdot), solve eigenproblems (linalg.eig, linalg.eigvals), solve linear
systems (linalg.solve), and do matrix inversion (linalg.inv).

A = numpy.array(((2, 1), (1, 3)))
B = numpy.array(((-2, 4.2), (4.2, 6)))

C =, B)
b = numpy.array((1, 2))

# output:
# [[ 0.2 14.4]
# [ 10.6 22.2]]

# output: [1 2]

# solve C x = b
x = numpy.linalg.solve(C, b)

# output: [ 0.04453441 0.06882591]

Normally, NumPy utilises high performance numerical libraries in linear
algebra operations. This means that the performance of NumPy is actually quite
good and not far e.g. from the performance of a pure-C implementations using
the same libraries.


NumPy has also support for polynomials. One can for example do least square
fitting, find the roots of a polynomial, and evaluate a polynomial.

A polynomial f(x) is defined by an 1D array of coefficients (p) with
length N, such that (f(x) = p[0] x^{N-1} + p[1] x^{N-2} + … + p[N-1]).

# f(x) = x^2 + random noise (between 0,1)
x = numpy.linspace(-4, 4, 7)
f = x**2 + numpy.random.random(x.shape)

p = numpy.polyfit(x, f, 2)

# output: [ 0.96869003 -0.01157275 0.69352514]
# f(x) = p[0] * x^2 + p[1] * x + p[2]
© CC-BY-NC-SA 4.0 by CSC - IT Center for Science Ltd.
This article is from the free online

Python in High Performance Computing

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now