Index

(A full index to the course appears at the end of Week 1.)

Topic   Step
Datasets butterfly_vs_owl 4.14
  hypothyroid 4.5, 4.7, 4.8, 4.10, 4.12, 4.13
  iris 4.6
  vehicle_images 4.15
Classifiers JRip 4.7, 4.9
  J48 4.14, 4.15
  NaiveBayes 4.7, 4.8, 4.9, 4.10, 4.15
  RandomForest 4.8, 4.9, 4.10
  SMO 4.15
Filters ColorLayout 4.14, 4.15
  EdgeHistogram 4.14, 4.15
  Gabor 4.15
  RemoveType 4.8
Packages distributedWekaBase 4.2, 4.5
  distributedWekaSpark 4.2, 4.5, 4.6
  imageFilters 4.14, 4.15
KnowledgeFlow components ArffHeaderSparkJob 4.5, 4.6, 4.7, 4.8, 4.9, 4.12
  ArffLoader 4.6
  CorrelationMatrixSparkJob 4.12
  CSVSaver 4.6
  ImageViewer 4.12, 4.13
  KMeansClustererSparkJob 4.13
  RandomlyShuffleDataSparkJob 4.7, 4.8, 4.9, 4.10
  WekaClassifierSparkJob 4.5, 4.7, 4.8
  WekaClassifierEvaluationSparkJob 4.5, 4.9, 4.10
  TextViewer 4.5, 4.6, 4.9, 4.12, 4.13
Plus Distributed Weka 4.1–4.13
  Hadoop 4.2, 4.4
  k-means clustering 4.12, 4.13
  Map-reduce 4.2, 4.3, 4.9
  Principal components analysis 4.12, 4.13
  Spark 4.2, 4.4, 4.5, 4.12

Share this article:

This article is from the free online course:

Advanced Data Mining with Weka

The University of Waikato

Get a taste of this course

Find out what this course is like by previewing some of the course steps before you join: