Want to keep learning?

This content is taken from the National Chiao Tung University's online course, AI for Legal Professionals (I): Law and Policy. Join the course to learn more.
a keyboard
Let's talk about the algorithmic bias

Algorithmic bias article

In this activity, we’ll be talking about “algorithmic bias.”

Please download and read this article below, and we will discuss this topic via the audio lecture in the following steps.


As machine learning increasingly affects people and society, it is important that we strive for a comprehensive and unified understanding of potential sources of unwanted consequences. For instance, downstream harms to particular groups are often blamed on “biased data,” but this concept encompass too many issues to be useful in developing solutions. In this paper, we provide a framework that partitions sources of downstream harm in machine learning into six distinct categories spanning the data generation and machine learning pipeline. We describe how these issues arise, how they are relevant to particular applications, and how they motivate different solutions. In doing so, we aim to facilitate the development of solutions that stem from an understanding of application-specific populations and data generation processes, rather than relying on general statements about what may or may not be “fair.”

Full article

Harini Suresh & John V. Guttag, A Framework for Understanding Unintended Consequences of Machine Learning (2020), v3, https://arxiv.org/pdf/1901.10002.pdf

Page 2 to 6 are helpful to answer the quiz and test.

Share this article:

This article is from the free online course:

AI for Legal Professionals (I): Law and Policy

National Chiao Tung University