Skip main navigation
We use cookies to give you a better experience, if that’s ok you can close this message and carry on browsing. For more info read our cookies policy.
We use cookies to give you a better experience. Carry on browsing if you're happy with this, or read our cookies policy for more information.

Index

(A full index to the course appears at the end of Week 1.)

Topic   Step
Datasets Diabetes 2.7
  Glass 2.7
  Ionosphere 2.2, 2.3, 2.5, 2.7
  Iris 2.7
  Reuters-Corn-train/test 2.9, 2.12, 2.14
  Reuters-Grain-train/test 2.10, 2.13
  Schizo 2.7
  Weather 2.4, 2.6, 2.11
Classifiers IBk 2.7
  J48 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 2.10, 2.11, 2.12, 2.13
  JRip 2.7
  NaiveBayes 2.10, 2.11, 2.12, 2.14
  NaiveBayesMultinomial 2.13, 2.14
  OneR 2.5
  PART 2.7
  SimpleLogistic 2.7
  SMO 2.7
Metalearners FilteredClassifier 2.4, 2.5, 2.9, 2.10, 2.12, 2.13
Filters Discretize (supervised) 2.4, 2.5, 2.7
  Discretize (unsupervised) 2.2, 2.3
  MultiFilter 2.10, 2.12
  NumericToNominal 2.10, 2.12
  StringToWordVector 2.9, 2.10, 2.12, 2.13, 2.14
Plus … Experimenter interface 2.3, 2.5, 2.14
  ROC curve (AUC) 2.11, 2.12, 2.13
  Stemming 2.14
  Stop words 2.13

Share this article:

This article is from the free online course:

More Data Mining with Weka

The University of Waikato

Contact FutureLearn for Support