Skip main navigation

Scalismo Lab: shape modelling with Gaussian Processes and kernels

Let's visualise maths in Scalismo Lab! Build Gaussian Processes from scratch using generic kernels and experiment with parameters and combinations.
In this hands-on step, we will build upon the previous tutorial video and practice shape model creation from scratch, that is without any provided data.

We will start by creating a continous Gaussian Process based on a simple Gaussian kernel. We will then see how to tune the parameters of this kernel to obtain either more or less smooth or pronounced deformations.

We will also reproduce the Gaussian Processes created in the video, which notably lead to symmetric and spatially localised deformation fields, and check up on the fact that sample covariances are simply kernels learned from data.

In the full track version, we will focus on the differences between scalar-valued and matrix-valued kernels and learn how to implement our own kernels by extending the required Scalismo classes.

To access the tutorial document:

  1. Switch to Scalismo Lab.
  2. Select the Shape Modelling with Gaussian Processes and Kernels document under:
    Documents -> Fast track, for the fast track version
    Documents -> Full track, for the full track version

If you have questions, ask them in the comments section here on FutureLearn.

If you are doing the full track version, please remember that the exercises are optional. If you find them too hard, you can continue going through the tutorial without solving the exercises.

Did anything go wrong and you have a weird shape output? Post it in our Shapes Gone Wrong Padlet!

© University of Basel
This article is from the free online

Statistical Shape Modelling: Computing the Human Anatomy

Created by
FutureLearn - Learning For Life

Reach your personal and professional goals

Unlock access to hundreds of expert online courses and degrees from top universities and educators to gain accredited qualifications and professional CV-building certificates.

Join over 18 million learners to launch, switch or build upon your career, all at your own pace, across a wide range of topic areas.

Start Learning now